Noncommutative deformations

of quantum field theories,

Iocality and causality

M.A. Soloviev
J. Phys A, 40 (2007) 14593; Phys. Rev. D 77 (2008) 125013
arxiv: 0708.1151, 0802.0997 [hep-th]
Lebedev Institute, Moscow
SFT09, April 17, 2009

Motivation and Program

Restrictions imposed by the uncertainty principle and gravity on measurements

Low-energy limit of string theory

$$
\left[x^{\mu}, x^{\nu}\right]_{\star} \equiv x^{\mu} \star x^{\nu}-x^{\nu} \star x^{\mu}=i \theta^{\mu \nu}
$$

\Uparrow
Star products: Moyal-Weyl-Grönewold, Wick-Voros
(Galluccio, Lizzi, Vitale, (2008))
\Downarrow (Balachandran, Martone, (2009))
Twisted Poincaré covariance and twisted tensor product \otimes_{\star} \Downarrow

Under what conditions do the star and twisted tensor products converge? How should the causality principle be implemented in NC QFT?

Plan

- Introduction: Star products and twisted tensor products
- Noncommutative deformations of quantum field theories
- Two concepts of wedge-locality
- Convergence of star products and adequate function spaces
- θ-Locality instead of microcausality
- Conclusions

Moyal *-product

$$
\begin{gathered}
\left(f \star_{M} g\right)(x)=f(x) \exp \left(\frac{i}{2} \overleftarrow{\partial_{\mu}} \theta^{\mu \nu} \overrightarrow{\partial_{\nu}}\right) g(x) \\
=f(x) g(x)+\sum_{n=1}^{\infty}\left(\frac{i}{2}\right)^{n} \frac{1}{n!} \theta^{\mu_{1} \nu_{1}} \ldots \theta^{\mu_{n} \nu_{n}} \partial_{\mu_{1}} \ldots \partial_{\mu_{n}} f(x) \partial_{\nu_{1}} \ldots \partial_{\nu_{n}} g(x)
\end{gathered}
$$

Wick-Voros *-product

$$
\begin{gathered}
\left(f \star_{V} g\right)(x)=f(x) \exp \left(\frac{i}{2} \overleftarrow{\partial_{\mu}} \theta^{\mu \nu} \overrightarrow{\partial_{\nu}}+\frac{\theta}{2} \overleftarrow{\partial_{\mu}} \overrightarrow{\partial^{\mu}}\right) g(x) \\
T\left(f \star_{M} g\right)=T(f) \star_{V} T(g), \quad T=\exp \left(\frac{\theta}{4} \nabla^{2}\right) \quad \text { (Berezin, 1971) }
\end{gathered}
$$

Schwartz space of smooth functions of fast decrease

$$
S\left(\mathbb{R}^{d}\right)=\left\{f: \sup _{x}(1+|x|)^{N}\left|\partial^{\kappa} f(x)\right|<\infty, N \in \mathbb{Z}_{+} \kappa \in \mathbb{Z}_{+}^{d}\right\}, \quad \partial^{\kappa}=\partial_{1}^{\kappa_{1}} \cdots \partial_{d}^{\kappa_{d}}
$$

- The power series defining \star_{M} and \star_{V} generally diverge for functions in S
- The Moyal product can be continuously extended from a suitable subspace to S
- For the Wick-Voros product such an extension is impossible

Twisted (Moyal) tensor product

$$
\begin{gathered}
\left(f \otimes_{\theta} g\right)(x, y)=f(x) \exp \left(\frac{i}{2} \overleftarrow{\partial_{\mu}} \theta^{\mu \nu} \overrightarrow{\partial_{\nu}}\right) g(y) \\
\left(f \star_{\theta} g\right)(x)=\left(f \otimes_{\theta} g\right)(x, x)
\end{gathered}
$$

$$
\left(f \otimes_{\theta} g\right) \otimes_{\theta} h=f \otimes_{\theta}\left(g \otimes_{\theta} h\right)
$$

$\left(f \otimes_{\theta} g\right)\left(x_{1}, \ldots, x_{m} ; y_{1}, \ldots, y_{n}\right)=\prod_{a=1}^{m} \prod_{b=1}^{n} e^{\frac{i}{2} \theta^{\mu \nu}} \frac{\partial}{\partial x_{a}^{\mu}} \frac{\partial}{\partial y_{b}^{\nu}} f\left(x_{1}, \ldots, x_{m}\right) g\left(y_{1}, \ldots, y_{n}\right)$

$$
\left(f \widehat{\otimes_{\theta} g}\right)(p, q)=\underbrace{\exp \left(\frac{i}{2} \theta^{\mu \nu} p_{\mu} q_{\nu}\right)}_{\uparrow}(\hat{f} \otimes \hat{g})(p, q), \quad f \in S\left(\mathbb{R}^{d}\right), g \in S\left(\mathbb{R}^{d}\right)
$$

multiplier of $S\left(\mathbb{R}^{2 d}\right)$

Noncommutative deformations of quantum field theories

Let ϕ be a scalar field on commutative Minkowski space and

$$
\begin{gathered}
\left\langle\Psi_{0}, \phi\left(f_{1}\right) \cdots \phi\left(f_{n}\right) \Psi_{0}\right\rangle=\left(W^{(n)}, f_{1} \otimes \cdots \otimes f_{n}\right), \quad W^{(n)} \in S^{\prime}\left(\mathbb{R}^{4 n}\right) \\
\left(W_{\theta}^{(n)}, f_{1} \otimes \cdots \otimes f_{n}\right) \stackrel{\text { def }}{=}\left(W^{(n)}, f_{1} \otimes_{\theta} \cdots \otimes_{\theta} f_{n}\right) \\
\Phi_{n}(f)=\int d x_{1} \cdots d x_{n} \phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right) f\left(x_{1}, \ldots, x_{n}\right) \Psi_{0}, \quad f \in S\left(\mathbb{R}^{4 n}\right)
\end{gathered}
$$

We set

$$
\phi_{\theta}(g) \Psi_{0}=\phi(g) \Psi_{0}, \quad \phi_{\theta}(g) \Phi_{n}(f)=\Phi_{n+1}\left(g \otimes_{\theta} f\right), \quad n \geq 1
$$

Then

$$
\left\langle\Psi_{0}, \phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right) \Psi_{0}\right\rangle=W_{\theta}^{(n)}\left(x_{1}, \cdots, x_{n}\right)
$$

and the vacuum state Ψ_{0} is cyclic for every field ϕ_{θ}

Th. 1. [Phys. Rev. D 77 (2008) 125013] Let ϕ be a Hermitian scalar field satisfying the usual Wightman axioms. Then every deformed field ϕ_{θ} is well-defined as an operator-valued tempered distribution with the same domain in the Hilbert space. Moreover,

$$
\phi_{\theta}(g)^{*}=\phi_{\theta}(\bar{g}) \quad \text { for all } \quad g \in S\left(\mathbb{R}^{4}\right)
$$

and

$$
\sum_{m, n=1}^{N}\left(W_{\star}^{(m+n)}, f_{m}^{\dagger} \otimes f_{n}\right) \geq 0, \quad \text { for all } \quad f_{m} \in S\left(\mathbb{R}^{4 m}\right), f_{n} \in S\left(\mathbb{R}^{4 n}\right)
$$

(with $f^{\dagger}\left(x_{1}, \ldots, x_{n}\right) \xlongequal{\text { def }} \overline{f\left(x_{n}, \ldots, x_{1}\right)}$).

Deformation of a free field

$$
a_{\theta}(p)=e^{(i / 2) p \theta P_{a}} a(p), \quad a_{\theta}^{*}(p)=e^{-(i / 2) p \theta P} a^{*}(p)
$$

where P is the energy-momentum operator

$$
\begin{gathered}
a_{\theta}(p) a_{\theta}\left(p^{\prime}\right)=e^{-i p \theta p^{\prime}} a_{\theta}\left(p^{\prime}\right) a_{\theta}(p) \\
a_{\theta}^{*}(p) a_{\theta}^{*}\left(p^{\prime}\right)=e^{-i p \theta p^{\prime}} a_{\theta}^{*}\left(p^{\prime}\right) a_{\theta}^{*}(p) \\
a_{\theta}(p) a_{\theta}^{*}\left(p^{\prime}\right)=e^{i p \theta p^{\prime}} a_{\theta}^{*}\left(p^{\prime}\right) a_{\theta}(p)+2 \omega_{\mathbf{p}} \delta\left(\mathbf{p}-\mathbf{p}^{\prime}\right)
\end{gathered}
$$

Transformation law of the deformed fields under the Poincaré group

$$
U(y, \wedge) \phi_{\theta}(x) U^{-1}(y, \wedge)=\phi_{\wedge \theta \wedge^{T}}(\wedge x+y), \quad \wedge \in L_{+}^{\uparrow}
$$

Violation of microcausality

If $\Phi=\varphi^{(-)}\left(h_{1}\right) \varphi^{(-)}\left(h_{2}\right) \psi_{0}, h_{1,2} \in S\left(\mathbb{R}^{4}\right)$, then

$$
M_{\Phi}(x, y)=\left\langle\Psi_{0},\left[\varphi_{\theta}(x), \varphi_{\theta}(y)\right] \Phi\right\rangle \neq 0 \text { for }(x-y)^{2}<0 .
$$

Moreover, supp $\hat{M}_{\Phi} \subset \bar{V}_{+} \times \bar{V}_{+} \quad \Longrightarrow \quad \operatorname{supp} M_{\phi}=\mathbb{R}^{8}$

Localization in wedges

(Grosse, Lechner, JHEP 0809:131,

$$
\begin{array}{cc}
\theta=\left(\begin{array}{cccc}
0 & \theta_{e} & 0 & 0 \\
-\theta_{e} & 0 & 0 & 0 \\
0 & 0 & 0 & \theta_{m} \\
0 & 0 & -\theta_{m} & 0
\end{array}\right) & \longrightarrow W_{1}=\left\{x \in \mathbb{R}^{4}: x^{1}>\left|x^{0}\right|\right\} \\
& \downarrow \\
& \downarrow \theta \wedge^{T} \\
& \longleftrightarrow \\
& \wedge W_{1}
\end{array}
$$

If the sets $x+W_{\theta}$ and $y+W_{\theta^{\prime}}$ are spacelike separated, then

$$
\left[\phi_{\theta}(x), \phi_{\theta^{\prime}}(y)\right]=0
$$

A causal wedge in place of the light cone

$$
\begin{gathered}
\mathcal{O}(x) \stackrel{\text { def }}{=}: \varphi \star \varphi:(x)=\lim _{x_{1}, x_{2} \rightarrow x}: \varphi\left(x_{1}\right) \varphi\left(x_{2}\right): \\
+\sum_{n=1}^{\infty}\left(\frac{i}{2}\right)^{n} \frac{1}{n!} \theta^{\mu_{1} \nu_{1}} \ldots \theta^{\mu_{n} \nu_{n}} \lim _{x_{1}, x_{2} \rightarrow x}: \partial_{\mu_{1}} \ldots \partial_{\mu_{n}} \varphi\left(x_{1}\right) \partial_{\nu_{1}} \ldots \partial_{\nu_{n}} \varphi\left(x_{2}\right):
\end{gathered}
$$

In the case of space-space noncommutativity $\left(\theta^{23}=-\theta^{32} \neq 0\right.$ and $\theta^{\mu \nu}=0$ for $\mu, \nu \neq 2,3)$ the commutator $[\mathcal{O}(x), \mathcal{O}(y)]$ vanishes in the wedge $\left|x^{0}-y^{0}\right|<$ $\left|x^{1}-y^{1}\right|$, but $\left.\langle 0|\left[\mathcal{O}(x), \partial_{0} \mathcal{O}(y)\right]_{-}\left|p_{1}, p_{2}\right\rangle\right|_{x^{0}=y^{1}} \neq 0 \quad$ (Greenberg, Phys. Rev. D, 2006)

Th. 2. Let $O(x)$ be defined via the Moyal ${ }^{*}$-product with $\theta^{23}=$ $-\theta^{32} \neq 0$ and the other elements of the θ-matrix equal to zero. Then $[\mathcal{O}(x), \mathcal{O}(y)] \neq 0$ everywhere outside the wedge $\left|x^{0}-y^{0}\right|<\left|x^{1}-y^{1}\right|$ and the star commutator $[\mathcal{O}(x), \mathcal{O}(y)]_{\star} \xlongequal{\text { def }} \mathcal{O}(x) \star \mathcal{O}(y)-\mathcal{O}(y) \star \mathcal{O}(x)$ does not vanish for all x, y.

The case of Wick-Voros product

Let $\mathcal{O}(x)=: \varphi \star_{V} \varphi:(x), \theta^{23}=-\theta^{32}=\theta \neq 0$, and $\Phi=\varphi^{(-)}\left(h_{1}\right) \varphi^{(-)}\left(h_{2}\right) \psi_{0}$. Then

$$
\begin{aligned}
& \left\langle\Psi_{0},[\mathcal{O}(x), \mathcal{O}(y)] \Phi\right\rangle=8 \int \frac{d k d p_{1} d p_{2}}{(2 \pi)^{3(d-1)}} \epsilon\left(k_{0}\right) \delta\left(k^{2}-m^{2}\right) e^{\frac{\theta}{2} \mathbf{k}\left(\mathbf{p}_{2}-\mathbf{p}_{1}\right)} \\
& \quad \times e^{-i k \cdot(x-y)-i p_{1} \cdot x-i p_{2} \cdot y} \prod_{i=1}^{2} \vartheta\left(p_{i}\right) \delta\left(p_{i}^{2}-m^{2}\right) \cos \left(\frac{1}{2} k \theta p_{i}\right) \widehat{h}\left(p_{i}\right),
\end{aligned}
$$

where $\mathbf{k}=\left(k_{2}, k_{3}\right), k \theta p=k_{\mu} \theta^{\mu \nu} p_{\nu}$.
Because of the factor $e^{\frac{\theta}{2} \mathrm{k}\left(\mathrm{p}_{2}-\mathrm{p}_{1}\right)}$ this expression is not a tempered distribution can be defined only on analytic test functions

Conditions for convergence of the star products

$$
\begin{gathered}
(1+|x|)^{N}\left|\partial^{\kappa} f(x)\right|<C_{N} B^{|\kappa|}(\kappa!)^{1 / 2}, \\
\mathrm{~B}<\frac{1}{\sqrt{|\theta|}}, \quad|\theta|=\sum\left|\theta^{\mu \nu}\right|
\end{gathered}
$$

Def. 1. A smooth function f on \mathbb{R}^{d} belongs to $\mathcal{S}^{1 / 2}\left(\mathbb{R}^{d}\right)$ if for each $B>0$ and for any integer N, there exists a constant $C_{B, N}$ such that

$$
(1+|x|)^{N}\left|\partial^{\kappa} f(x)\right|<C_{B, N} B^{|\kappa|}(\kappa!)^{1 / 2}
$$

We endow $\mathcal{S}^{1 / 2}$ with the topology determined by the set of norms

$$
\|f\|_{B, N}=\sup _{x, \kappa}(1+|x|)^{N} \frac{\left|\partial^{\kappa} f(x)\right|}{B^{|\kappa|}(\kappa!)^{1 / 2}}
$$

Under this topology $\mathcal{S}^{1 / 2}$ is a nuclear Fréchet space

Test function spaces for NC QFT

Th. 3. [Theor. Math. Phys. 153 (2007); J. Phys. A 40 (2007)] The space $\mathcal{S}^{1 / 2}\left(\mathbb{R}^{d}\right)$ is a topological algebra under the Moyal \star-product as well as under the Wick-Voros $*$-product. If $f, g \in \mathcal{S}^{1 / 2}\left(\mathbb{R}^{d}\right)$, then the series representing these products converge absolutely in this space. Moreover these products depend continuously on the noncommutativity parameter θ.
$\mathcal{S}^{1 / 2}$ is largest of the subspaces of the Schwartz space that have such properties

We also use the space $S_{1 / 2, A}^{1 / 2, B}\left(\mathbb{R}^{d}\right)$ of all smooth functions on \mathbb{R}^{d} with the property that

$$
\|f\|_{A, B}=\sup _{\kappa, x} e^{|x / A|^{2}} \frac{\left|\partial^{\kappa} f(x)\right|}{B^{|\kappa|} \kappa^{\kappa / 2}}<\infty
$$

This space is nontrivial if $A B>2$

Causal commutator of averaged observables

$$
\mathcal{O}\left(f_{a}\right)=\int d x \mathcal{O}(x) f(x-a), \quad f \in S_{1 / 2, A}^{1 / 2, B}
$$

$$
\langle 0|\left[\mathcal{O}\left(f_{a}\right), \mathcal{O}\left(g_{-a}\right)\right]|\Phi\rangle, \quad|\Phi\rangle=\varphi^{-}\left(h_{1}\right) \varphi^{-}\left(h_{2}\right)\left|\Psi_{0}\right\rangle
$$

$$
\gamma=\inf _{\xi^{2} \geq 0}\left|\xi-\frac{a}{|a|}\right|
$$

Th. 4. Let ϕ be a free scalar field and let $\mathcal{O}(x)=: \phi \star \phi:(x)$, where the \star-product is determined by an arbitrary real antisymmetric matrix $\theta^{\mu \nu}$. Suppose that test functions f and g belong to $S_{1 / 2, A}^{1 / 2, B}$, where $A>0$ and $0<B<1 / \sqrt{|\theta|}$. Then

$$
\left.\left|\langle 0|\left[\mathcal{O}\left(f_{a}\right), \mathcal{O}\left(g_{-a}\right)\right]\right| \Phi\right\rangle \mid \leq C_{\Phi, A^{\prime}}\|f\|_{A, B}\|g\|_{A, B} e^{-2\left|\gamma a / A^{\prime}\right|^{2}}
$$

for each $A^{\prime}>A$.

Because of the conditions $B<1 / \sqrt{|\theta|}$ and $A B>2$, the best result is at $A \sim 2 \sqrt{|\theta|}$ and demonstrates a decrease

$$
\sim \exp \left(-\frac{|\gamma a|^{2}}{2|\theta|}\right)
$$

The same result holds in the case of Wick-Voros product

Def. 2. Let V be a cone in $\subset \mathbb{R}^{d}$. A smooth function on \mathbb{R}^{d} belongs to the space $S^{1 / 2, B}(V)$, if it satisfies the condition

$$
\begin{aligned}
& \sup _{x \in V}(1+|x|)^{N}\left|\partial^{\kappa} f(x)\right|<C_{N} B^{|\kappa|}(\kappa!)^{1 / 2}, \\
& \mathbb{V}=\left\{(x, y) \in \mathbb{R}^{4} \times \mathbb{R}^{4}:(x-y)^{2} \geq 0\right\} .
\end{aligned}
$$

θ-locality condition: For any fields φ, ψ and for any states Φ, ψ in a common invariant domain $D \subset H$, either

$$
\left\langle\Phi,\left[\phi(x), \psi\left(x^{\prime}\right)\right]-\Psi\right\rangle
$$

or

$$
\left\langle\Phi,\left[\phi(x), \psi\left(x^{\prime}\right)\right]_{+} \psi\right\rangle
$$

can be continuously extended to the space $S^{1 / 2, B}(\mathbb{V})$, where $B_{\varphi, \Psi, \Phi, \Psi} \sim$ $1 / \sqrt{|\theta|}$.

Conclusions

- The noncommutative deformation of QFT by twisting tensor products leads to the lack of microcausality, though preserves (in the Moyal case) certain relative localization properties
- The space $\mathcal{S}^{1 / 2}$ is universal for a nonperturbative (in particular for a Wightman-type axiomatic) formulation of NC QFT
- This space, being a maximal topological star product algebra with absolute convergence, is completely adequate to the concept of strict deformation quantization
- The θ-locality condition, which means heuristically that the commutators of observables behave at large spacelike separation like

$$
\exp \left(-|x-y|^{2} / \theta\right)
$$

can possibly be used for formulating causality in NC QFT

