Non-perturbative treatment of homogeneous non-Gaussian integrals

Shamil Shakirov, ITEP, Moscow

April 12-19, 2009
Moscow, Russia

There

Here

There

$$
S(x)=\text { minimal }
$$

Here

${ }^{\square}$ April 12-19, 2009 Moscow, Russia

Probabilistic character of the theory

To compute any average, we calculate an integral

$$
\langle f(x)\rangle=\int f(x) e^{-S(x)} d x
$$

Do we know, how to calculate such integrals?

The Gaussian integration formula

We do, if $S(x)$ is quadratic:

$$
\int e^{-S_{i j} x_{i} x_{j}} d^{n} x=\frac{1}{\sqrt{\operatorname{det} S}}
$$

Non-Gaussian integration formula?

If $S(x)$ is cubic or higher, much less is known:

$$
\int e^{-S_{i j k} x_{i} x_{j} x_{k}} d^{n} x=?
$$

More generally:

Homogeneous form of degree r in n variables:

$$
S\left(x_{1}, \ldots, x_{n}\right)=S_{i_{1}, \ldots, i_{r}} x_{i_{1}} \ldots x_{i_{r}}
$$

Homogeneous non-Gaussian integral of type $n \mid r$:

$$
J_{n \mid r}(S)=\int e^{-S\left(x_{1}, \ldots, x_{n}\right)} d^{n} x=?
$$

Scaling symmetry

$$
J_{n \mid r}(\lambda S)=\int e^{-\lambda S\left(x_{1}, \ldots, x_{n}\right)} d^{n} x=\lambda^{-n / r} J_{n \mid r}(S)
$$

$S L(n)$ symmetry

$$
J_{n \mid r}(S)=S L(n) \text { invariant function of } S_{i_{1}, \ldots, i_{r}}
$$

$$
\text { Say, } J_{n \mid 2}(S)=\frac{1}{\sqrt{\operatorname{det} S}}-\text { invariant }
$$

$S L(n)$ invariants

All $S L(n)$ invariants of a form S of type $n \mid r$ can be represented as diagrams, made of S-vertices and ϵ-vertices:

r indices

n indices

Determinant of a matrix

Say, determinant of $n \times n$ matrix looks like

The \# of independent invariants I_{k} of a form of type $n \mid r$

$r \backslash n$	2	3	4	5	6	7
2	1	1	1	1	1	1
3	1	2	5	11	21	36
4	2	7	20	46	91	162
5	3	13	41	102	217	414
6	4	20	69	186	427	876

Case 2|3: form $S(x, y)=a x^{3}+b x^{2} y+c x y^{2}+d y^{3}$

There is a single independent invariant, called "discriminant":

$$
D=27 a^{2} d^{2}-b^{2} c^{2}-18 a b c d+4 a c^{3}+4 b^{3} d
$$

Case 2|3

Therefore, the integral must be a function of D :

$$
J_{2 \mid 3}(S)=F(D)
$$

Scaling symmetry implies that

$$
J_{2 \mid 3}(S)=\frac{1}{\sqrt[6]{D}}
$$

Case 2|4: form $S(x, y)=a x^{4}+b x^{3} y+c x^{2} y^{2}+d x y^{3}+e y^{4}$

There are 2 independent invariants, called apolara and Hankel invariant:

Case 2|4

$$
\begin{gathered}
I_{2}=c^{2}-3 b d+12 a e \\
I_{3}=2 c^{3}-9 b c d+27 b^{2} e+27 a d^{2}-72 a c e
\end{gathered}
$$

Case $2 \mid 4$

Therefore, the integral must be a function of I_{2}, l_{3} :

$$
J_{2 \mid 4}(S)=F\left(I_{2}, I_{3}\right)
$$

Scaling symmetry is no longer powerful:

$$
J_{2 \mid 4}(S)=\frac{1}{\sqrt[4]{I_{2}}} G\left(\frac{I_{3}^{2}}{I_{2}^{3}}\right)
$$

We need something else to determine the function $G(z)$.

Case 2|4: a differential equation

Differential equations can be helpful. Integral

$$
J_{2 \mid 4}=\int e^{-\left(a x^{4}+b x^{3} y+c x^{2} y^{2}+d x y^{3}+e y^{4}\right)} d x d y
$$

satisfies a differential equation

$$
\left(\frac{\partial}{\partial a} \frac{\partial}{\partial c}-\frac{\partial}{\partial b} \frac{\partial}{\partial b}\right) J_{2 \mid 4}=0
$$

Case 2|4: complete system of equations

$$
\begin{aligned}
& \left(\frac{\partial}{\partial a} \frac{\partial}{\partial c}-\frac{\partial}{\partial b} \frac{\partial}{\partial b}\right) J_{2 \mid 4}=0 \\
& \left(\frac{\partial}{\partial a} \frac{\partial}{\partial d}-\frac{\partial}{\partial b} \frac{\partial}{\partial c}\right) J_{2 \mid 4}=0 \\
& \left(\frac{\partial}{\partial a} \frac{\partial}{\partial e}-\frac{\partial}{\partial b} \frac{\partial}{\partial d}\right) J_{2 \mid 4}=0 \\
& \left(\frac{\partial}{\partial a} \frac{\partial}{\partial e}-\frac{\partial}{\partial c} \frac{\partial}{\partial c}\right) J_{2 \mid 4}=0
\end{aligned}
$$

Case 2|4: hypergeometric equation

If we substitute our ansatz

$$
J_{2 \mid 4}(S)=\frac{1}{\sqrt[4]{I_{2}}} G\left(\frac{I_{3}^{2}}{I_{2}^{3}}\right)
$$

these equations are translated into single equation on $G(z)$:

$$
\left(144 z^{2}-24 z\right) \frac{\partial^{2} G(z)}{\partial z^{2}}+(216 z-12) \frac{\partial G(z)}{\partial z}+5 G(z)=0
$$

Case 2|4: hypergeometric function

$$
\left(144 z^{2}-24 z\right) \frac{\partial^{2} G(z)}{\partial z^{2}}+(216 z-12) \frac{\partial G(z)}{\partial z}+5 G(z)=0
$$

This is a classical hypergeometric equation. Accordingly,

$$
J_{2 \mid 4}(S)=\frac{1}{\sqrt[4]{I_{2}}}{ }_{2} F_{1}\left(\left[\frac{1}{12}, \frac{5}{12}\right],\left[\frac{1}{2}\right], \frac{6 I_{3}^{2}}{l_{2}^{3}}\right)
$$

Case 2|4: series solution

Using the Pochhammer symbol $(a)_{k}=a(a+1) \ldots(a+k-1)$, we can write

$$
J_{2 \mid 4}(S)=I_{2}^{-1 / 4} \cdot \sum_{i=0}^{\infty} \frac{(1 / 12)_{i}(5 / 12)_{i}}{(1 / 2)_{i}} \frac{u^{i}}{i!}
$$

where $u=\frac{6 l_{3}^{2}}{l_{2}^{3}}$ is the dimensionless ratio

Case 2|4: there is a singularity!

$$
J_{2 \mid 4}(S)=\frac{1}{\sqrt[4]{l_{2}}}{ }_{2} F_{1}\left(\left[\frac{1}{12}, \frac{5}{12}\right],\left[\frac{1}{2}\right], \frac{6 l_{3}^{2}}{l_{2}^{3}}\right)
$$

The singularity resides at $z=1$, i.e, $l_{2}^{3}-6 I_{3}^{2}=0$
Amazingly, $D=I_{2}^{3}-6 I_{3}^{2}$ is exactly the discriminant of $S(x, y)$

What is discriminant?

For any homogeneous form $S\left(x_{1}, \ldots, x_{n}\right)=S_{i_{1}, \ldots, i_{r}} x_{i_{1}} \ldots x_{i_{r}}$

> the system of derivatives is solvable

$$
\left\{\begin{array}{c}
\frac{\partial S}{\partial x_{1}}=0 \\
\cdots \\
\frac{\partial S}{\partial x_{n}}=0
\end{array}\right.
$$

if and only if coefficients S satisfy some condition $D(S)=0$.

Hypothesis:

Singularities of non-Gaussian integrals

$$
J_{n \mid r}(S)=\int e^{-S\left(x_{1}, \ldots, x_{n}\right)} d^{n} x
$$

are controlled by discriminant of S
For this reason, J can be naturally called integral discriminants

Case 2|5: a form of degree 5 in 2 variables

The form looks like

$$
S(x, y)=a x^{5}+b x^{4} y+c x^{3} y^{2}+d x^{2} y^{3}+e x y^{4}+f y^{5}
$$

There are 3 independent invariants in this case

Case 2|5: invariant of degree 4

Case $2 \mid 5$: invariant of degree 8

Case 2|5: invariant of degree 12

The answer

Applying the same procedure with differential equations, one ends with

$$
J_{2 \mid 5}(S)=I_{4}^{-1 / 10} \cdot \sum_{i, j=0}^{\infty} \frac{(3 / 10)_{i+j}(1 / 10)_{2 i+3 j}(1 / 10)_{j}}{(2 / 5)_{i+2 j}(3 / 5)_{i+2 j}} \frac{u^{i}}{i!} \frac{v^{j}}{j!}
$$

where $u=\frac{16 I_{8}}{I_{4}^{2}}$ and $v=\frac{128 I_{12}}{3 I_{4}^{3}}$ are the dimensionless ratios

Case 3|3: a form of degree 3 in 3 variables

The form looks like

$$
\begin{gathered}
S(x, y)=a x^{3}+b x^{2} y+c x y^{2}+d y^{3}+e x^{2} z+ \\
+f x y z+g y^{2} z+h x z^{2}+p y z^{2}+q z^{3}
\end{gathered}
$$

There are 2 independent invariants in this case

Case 3|2: invariant of degree 4

Case 3|2: invariant of degree 6

The answer

Applying the same procedure with differential equations, one ends with

$$
J_{3 \mid 3}(S)=I_{4}^{-1 / 4} \cdot \sum_{i=0}^{\infty} \frac{(1 / 12)_{i}(5 / 12)_{i}}{(1 / 2)_{i}} \frac{u^{i}}{i!}
$$

where $u=-\frac{3 I_{6}^{2}}{32 I_{4}^{3}}$ is the dimensionless ratio

Conclusion

n	r	Integral discriminant $J_{n \mid r}$
2	3	$I_{4}^{-1 / 6}$
2	4	$I_{2}^{-1 / 4} \cdot \sum_{i=0}^{\infty} \frac{1}{i!} \cdot \frac{(1 / 12)_{i}(5 / 12)_{i}}{(1 / 2)_{i}} \cdot\left(\frac{6 l_{3}^{2}}{I_{2}^{3}}\right)^{i}$
2	5	$I_{4}^{-1 / 10} \cdot \sum_{i, j=0}^{\infty} \frac{1}{i!j!} \cdot \frac{(3 / 10)_{i+j}(1 / 10)_{2 i+3 j}(1 / 10)_{j}}{(2 / 5)_{i+2 j}(3 / 5)_{i+2 j}} \cdot\left(\frac{16 I_{8}}{I_{4}^{2}}\right)^{i}\left(\frac{128 l_{12}}{3 I_{4}^{3}}\right)^{j}$
3	3	$I_{4}^{-1 / 4} \cdot \sum_{i=0}^{\infty} \frac{1}{i!} \cdot \frac{(1 / 12)_{i}(5 / 12)_{i}}{(1 / 2)_{i}} \cdot\left(-\frac{3 I_{6}^{2}}{32 I_{4}^{3}}\right)^{i}$
\ldots	\ldots	\ldots

Thank you very much for your attention!

