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1. Introduction

Lagrangian and EOM for p-Adic Open String:
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Lagrangian and EOM for p-Adic Sector of Open
Strings:

1,4, O .0 2
L= 0l - D+ - 62 8(9).

1)+ N6 = 26 8(6) + 07 #/(6)



p-Adic numbers:
e discovered by K. Hansel in 1897.

e Many applications in mathematics, e.g. representa-
tion theory, algebraic geometry and modern number
theory.

e Mmany applications in mathematical physics since
1987, e.g. string theory, QFT, quantum mechanics,
dynamical systems, ...

e p-adic mathematical physics: (1) Fourth Int. Conf.
on p-adic Math. Physics,(Grodno, Belarus, Sept.
2009); (2) int. journal: p-Adic Numbers, Ultrametric
Analysis and Applications (Pleiades/Springer).

e Any p-adic number (z € Q, ) has a unique canonical
representation
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e Real and p-adic numbers unify by adeles. An adele «
IS an infinite sequence
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where for all but a finite set P of primes p one has
that o, € Z, = {z € Q, : |z|, < 1}.



2. p-Adic and Adelic Strings

Volovich, VIadimirov, Freund, Witten, Arefeva,
B.D., ...

String amplitudes:

e standard crossing symmetric Veneziano amplitude
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e p-adic crossing symmetric Veneziano amplitude
Ap(ab) =g} [ xfy Ly g
Qp
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where a,b,c € C with condition a+b+c=1 and ((a)
iIs the Riemann zeta function.

e product formula for adelic strings

A(a,b) = A (a,b) | [ A,(a,b) = g2 g2 = const.
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3. Effective Lagrangian for p-Adic Strings

e One of the greatest achievements in p-adic string the-
ory is an effective field description of scalar open and
closed p-adic strings. The corresponding Lagrangians
are very simple and exact. They describe not only
four-point scattering amplitudes but also all higher
(Koba-Nielsen) ones at the tree-level.

e The exact tree-level Lagrangian for effective scalar
field ¢ which describes open p-adic string tachyon is
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where p is any prime number, (0= —9? 4+ V? is the D-

dimensional d’Alembertian and metric with signature
(- + ...4) (Freund, Witten, Frampton, Okada, ...) .

e AN infinite number of spacetime derivatives follows
from

_o Inp Inp .« 1
2mp :ex J— ’:] p— — _’:] .
P A —— é( m) T



e T he equation of motion is

O

P =P,
and its properties have been studied by many au-
thors (see e.g. Vliadimirov, Barnaby and references
therein). It has trivial solutions ¢ = 0 and ¢ = 1.
There are also inhomogeneous solutions resembling
solitons. Equation separates in arguments and for
any spatial direction ' one has

; 1 p—1 :
p(x) = pTT exp (- =L (x)?),
myplinp

e Prime number p can be replaced by natural number
n > 2 and such expression also makes sense. More-
over, when p =1+ ¢ — 1 there is the limit which is
related to the ordinary bosonic string in the boundary
string field theory (Gerasimov-Shatashvili):
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This p-adic string theory has been significantly pushed
forward when was shown (Ghoshal-Sen) that it de-
scribes tachyon condensation and brane descent re-
lations.

After that success, many aspects of p-adic string dy-
namics have been investigated and compared with
dynamics of ordinary strings (see, e.g. Minahan,
Zwiebach, Moeller, ...).

Noncommutative deformation by the Moyal star
product and of p-adic string world-sheet with a con-
stant B-field was investigated (Ghoshal, ... ).

A systematic mathematical study of spatially homo-
geneous solutions of the nonlinear equation of motion
(Viadimirov).

Some possible cosmological implications of p-adic
string theory have been also investigated (Arefeva,
Barnaby, Joukovskaya, ...).

It was proposed (Ghoshal) that p-adic string theories
provide lattice discretization to the world-sheet of
ordinary strings.

As a result of these developments it follows that
many nontrivial features of ordinary strings are similar
to p-adic ones and are related to the p-adic effective
action.



4. Lagrangians for p-Adic Sector
A. Additive approach
B.D.: hep-th/0703008v1, 0804.4114v1[hep-th],

0805.0403v1[hep-th], 0809.1601[hep-th]

e Now we want to introduce a model which incorpo-
rates all the above n-adic string Lagrangians, so to
have the Riemann zeta function. We take the sum
of the Lagrangians £, in the form

L:chcn

n>1
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which depends on the choice of coefﬁcnents Ch,
masses m, and coupling constants g>.

e There is a few simple and interesting cases (m, =

m, g5 = g°):
n—1
Cn = 2Fh
2
n<—1
C, =
n2
n—1
Cn = p(n)

where p(n) is the Mobius function.



e Let us consider the first case C,, = n—1 .

n2th
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e According to the famous Euler product formula one

can write
Z 2 H .
2

n>1 —p

¢ Recall that the Riemann zeta function is defined as

(S)_Z Hl— , s=o-+ir, c>1.

n>1

e \We can rewrite Lagrangian in the form
—h
—|— 1

We shall consider this Lagranglan with analytic con-
tinuation of zeta functions and power series.

L= ——[= i
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¢( D) acts as a pseudodifferential operator in the

2m?

following way:
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where ¢(k) = [ (777 ¢(x) dz is the Fourier transform

of ¢(x).

Nonlocal dynamics of this field ¢ is encoded in the
pseudo-differential form of the Riemann zeta function
(the d’Alembertian is an argument of the Riemann
zeta function).

Potential of the above scalar field is equal to —L,; at
=20, i.e.
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where h #= 1 since ((1) = oc. The term with (-
function vanishes at h = -2,—4, -6, ---.

The equation of motion in differential and integral
form is

0 =,
m2+h>¢=Aczln— ",
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respectively. It is clear that ¢ = 0 is a trivial solution
for any real h. When h > 1 we have another constant
trivial solution ¢ = 1.
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e In the weak field approximation (|¢(x)| < 1) the above
expression becomes

, k2 ~
/RDe“”[C(— + h) — 1] (k) dk = 0,

2 m?2

which has a solution ¢(k) # 0 if equation

2

h) =1
(5 5+h
iIs satisfied. According to the usual relativistic Kine-

2
matic relation k2 = —k2+ k= —M?2, equation in the
form

M2
h) =1,
(5 —>+h)

determines mass spectrum M? = u;m?, where set

of values of spectral function u; depends on h. The
above equation gives infinitely many tachyon mass
solutions.
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EXAMPLE (h = 0)

e T he related Lagrangian IS

Lo = In(l - ¢)7].
e T he corresponding potential is
mP 0
o(6) = 2 1226 4 0+ i@ - 7],
where ((0) = —1. It has two local maxima: 15(0) =0

and 5(3) ~ 1.4437;}—5. There are no stable points and
Iim¢_>1 Vo(qb) - —00, |im¢_>ioo Vo(qb) - —&0.

e The equation of motion for ¢ is

1 N <b

= ix — k)dk = ——
op [ - bt ak =
It has two trivial solutions: gb = 0 and ¢ = 3. The
solution ¢ = 0 is evident. The solution ¢ = 3 fol-
lows from the Taylor expansion of the Riemann zeta

function operator

C(”)(O)

. 1
Ot )=

2m

n>1

So far nontrivial solutions are unknown.

13



e In the weak field approximation

2 ~
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on mass shell one obtains equation for the mass
spectrum

2
((F) =1

which has infinitely many tachyon solutions.
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Case C,, =12

n2

e INn this case Lagrangian becomes

mP 1 = 11 nt1
L=—7[-5¢2 (7= +nzn>¢+2¢ )
n=1 n=1
and it yields

¢2
— ¢

-

e T he corresponding potential is
mP 31 —7¢
V(g) = ——

g 24 (1 - 9)
which has the following properties: V(0) =V (31/7) =

0, V(1+£0) = 00, V(+0) = —0. At ¢ = 0 potential
has local maximum.

¢?,

e T he equation of motion is

_o((¢—1)°+1)
(p—-1)2

which has only ¢ = 0 as a constant real solution.

]
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Case Cp = p(n)i=t

n = p?m
n=pip2---pk, Pi =pj (1)
n

07
p(n) = ¢ (=1,
1 =1, (k=0).

Y

e INn this case Lagrangian becomes

+
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where M(¢) = 3125 u(n) ¢" = ¢— ¢ —¢> — 9>+ ¢° — 6" +
PO — ptt — .

[0
¢+/0 M(¢) dd],

e T he corresponding potential is

mD ¢
Vi) = ~LuO=0) =~ [* 4 /0 M(¢) dg] .

e The equation of motion is
1
((50)

which has ¢ = 0 as a constant real solution.

¢ —M(¢) =0
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e Its weak field approximation implies condition on the
mass spectrum

1
C(2L)
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B. Multiplicative approach
B.D.: arXiv:0902.0295

Let us now consider a new approach, which is not
based on a summation of p-adic Lagrangians, but
the Riemann zeta function will emerge through its

product form. Our starting point is again p-adic

Lagrangian with equal masses, i.e. ms = m? for

every p. It is useful to rewrite Lagrangian, first in
the form,

mbP  p? 1 =

_|_
Lp=—5 5 —{-Z¢lp 27" +p 2”"2]90"‘ PP
95 P 2

and then, by addition and substraction of 902, as
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Now we introduce a Lagrangian for the entire p-adic
sector by taking products

1
p

D _
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p p
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P P

at the corresponding places. Then this new La-
grangian becomes

- m? 1 .1, 0
L=""c@ el G5 - 1)

+C MG~ P TLA - P D),
p

where ¢(71(s) = 1/¢(s) and new scalar field is de-
noted by ¢. For the coupling constant g, there are

2
two interesting possibilities: (1) g5 = pé’_l, what

yields ¢(2)/C = 1 , and (2) gp = |r|p, Where r
may be any non zero rational number and it gives
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7loo I1p [7[p = 1 (this possibility was already consid-
ered by Dragovich). Both these possibilities are con-
sistent with adelic product formula. For simplicity, in
the sequel we shall take C' = ((2). It is worth noting
that having Lagrangian one can easily reproduce its

p-adic ingredient.



Let us rewrite the above Lagrangian in the simple
form

1, 4O .0 2
L= 0l G - D+ - 62 (9),

with m = 1 and ®(¢) = ACI[,(1 — ¢P~1), where
AC denotes analytic continuation of infinite product
[1,(1 — ¢P~1), which is convergent if [¢|cc < 1. One
can easily see that ®(0) =1 and (1) = »(—-1) = 0.

The corresponding equation of motion is

G -+ = 208(0) + 62 (9)

and has ¢ = 0 as a trivial solution. In the weak-field
approximation (¢(z) < 1), equation becomes

O =N
[¢ (5—1)+C (5)]¢—2¢-

Note that the above operator-valued zeta function
can be regarded as a pseudodifferential operator.
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Mass spectrum of M?2 is determined by solutions of
equation

2
G G 3

There are infinitely many tachyon solutions, which
are below largest one M2 ~ —3.5.

The potential follows from —£ at =0, i.e

V(¢) = [T+ ®(¢)] 2,

since ((—1) = —1/12 and ¢(0) = —1/2. This
potential has local minimum V(0) = 0 and values
V(£1l) = 7. To explore behavior of V(¢) for all
¢ € R one has first to investigate properties of the
function ®©(¢).
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It is worth noting that a Lagrangian similar to the
above one can be obtained by an additive approach.
Namely, let us start from g2 = p2/(p°—1) and m = 1,
we have

+o0 1 10 _Haq
n=1 n=1

00 0 00
+ > um)p2]¢— > pn) ™t

n—1 n—1
where p(n) is the above Mobius function. Intro-
ducing zeta function one can rewrite it in the form

_ 1
L=20[C'G -1
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where F(¢) = X172 u(n) "~ 1. The difference be-
tween two Lagrangians is only in functions ®(¢) and
F(¢). Since ®(¢) = (1 — ¢)(1 — ¢2)(1 — ¢)... =
1—p—p2+d3—0*+...and F(¢) = 1—gp—2—g*+..., it
follows that these functions have the same behavior
for |¢| < 1. Hence, Lagrangians have the same mass
spectrum and in weak-field approximation describe
the same scalar field theory.
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5. Concluding Remarks

e p-Adic strings are in many ways related to ordinary strings.
It seems that ordinary and p-adic strings are different faces
of an adelic string.

e p-Adic scalar tachyons at the tree level are described by
simple and exact nonlocal Lagrangian.

e All here constructed Lagrangians contain Riemann zeta
function nonlocality.

e These Lagrangians with {-function nonlocality are new and
significant in their own right.

e Find the corresponding string amplitudes.

e Investigate possible cosmological aspects.
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