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1. Introduction

Lagrangian and EOM for p-Adic Open String:

L =
mD

g2

p2

p− 1
[− 1

2
ϕp

− ¤
2m2 ϕ +

1

p + 1
ϕp+1]

p
− ¤

2m2 ϕ = ϕp

Lagrangian and EOM for p-Adic Sector of Open

Strings:

L =
1

2
φ [ζ−1(

¤
2
− 1) + ζ−1(

¤
2
)]φ− φ2 Φ(φ) ,

[ζ−1(
¤
2
− 1) + ζ−1(

¤
2
)]φ = 2φΦ(φ) + φ2 Φ′(φ)
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p-Adic numbers:

• discovered by K. Hansel in 1897.

• many applications in mathematics, e.g. representa-
tion theory, algebraic geometry and modern number
theory.

• many applications in mathematical physics since
1987, e.g. string theory, QFT, quantum mechanics,
dynamical systems, ...

• p-adic mathematical physics: (1) Fourth Int. Conf.
on p-adic Math. Physics,(Grodno, Belarus, Sept.
2009); (2) int. journal: p-Adic Numbers, Ultrametric
Analysis and Applications (Pleiades/Springer).

• Any p-adic number (x ∈ Qp ) has a unique canonical
representation

x = pν(x)
+∞∑
n=0

xn pn , ν(x) ∈ Z , xn ∈ {0, 1, · · · , p− 1}.

• Real and p-adic numbers unify by adeles. An adele α
is an infinite sequence

α = (α∞, α2, α3, · · · , αp , · · ·) , α∞ ∈ R , αp ∈ Qp

where for all but a finite set P of primes p one has
that αp ∈ Zp = {x ∈ Qp : |x|p ≤ 1}.
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2. p-Adic and Adelic Strings

Volovich, Vladimirov, Freund, Witten, Arefeva,

B.D., ...

String amplitudes:

• standard crossing symmetric Veneziano amplitude

A∞(a,b) = g2
∞

∫

R
|x|a−1

∞ |1− x|b−1
∞ d∞x

= g2
∞

ζ(1− a)

ζ(a)

ζ(1− b)

ζ(b)

ζ(1− c)

ζ(c)

• p-adic crossing symmetric Veneziano amplitude

Ap(a,b) = g2
p

∫

Qp

|x|a−1
p |1− x|b−1

p dpx

= g2
p

1− pa−1

1− p−a

1− pb−1

1− p−b

1− pc−1

1− p−c

where a, b, c ∈ C with condition a + b + c = 1 and ζ(a)
is the Riemann zeta function.

• product formula for adelic strings

A(a,b) = A∞(a,b)
∏
p

Ap(a,b) = g2
∞

∏
p

g2
p = const.
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3. Effective Lagrangian for p-Adic Strings

• One of the greatest achievements in p-adic string the-
ory is an effective field description of scalar open and
closed p-adic strings. The corresponding Lagrangians
are very simple and exact. They describe not only
four-point scattering amplitudes but also all higher
(Koba-Nielsen) ones at the tree-level.

• The exact tree-level Lagrangian for effective scalar
field ϕ which describes open p-adic string tachyon is

Lp =
mD

p

g2
p

p2

p− 1
[− 1

2
ϕp

− ¤
2m2

p ϕ +
1

p + 1
ϕp+1] ,

where p is any prime number, ¤ = −∂2
t +∇2 is the D-

dimensional d’Alembertian and metric with signature
(− + ...+) (Freund, Witten, Frampton, Okada, ...) .

• An infinite number of spacetime derivatives follows
from

p
− ¤

2mp = exp (− ln p

2mp
¤) =

∑

k≥0

(− ln p

2mp
)k 1

k!
¤k .
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• The equation of motion is

p
− ¤

2m2
p ϕ = ϕp ,

and its properties have been studied by many au-
thors (see e.g. Vladimirov, Barnaby and references
therein). It has trivial solutions ϕ = 0 and ϕ = 1.
There are also inhomogeneous solutions resembling
solitons. Equation separates in arguments and for
any spatial direction xi one has

ϕ(xi) = p
1

2(p−1) exp (− p− 1

2m2
p p ln p

(xi)2) .

• Prime number p can be replaced by natural number
n ≥ 2 and such expression also makes sense. More-
over, when p = 1 + ε → 1 there is the limit which is
related to the ordinary bosonic string in the boundary
string field theory (Gerasimov-Shatashvili):

L =
mD

g2
[
1

2
ϕ

¤
m2

ϕ +
ϕ2

2
(lnϕ2 − 1)] .
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• This p-adic string theory has been significantly pushed
forward when was shown (Ghoshal-Sen) that it de-
scribes tachyon condensation and brane descent re-
lations.

• After that success, many aspects of p-adic string dy-
namics have been investigated and compared with
dynamics of ordinary strings (see, e.g. Minahan,
Zwiebach, Moeller, ...).

• Noncommutative deformation by the Moyal star
product and of p-adic string world-sheet with a con-
stant B-field was investigated (Ghoshal, ... ).

• A systematic mathematical study of spatially homo-
geneous solutions of the nonlinear equation of motion
(Vladimirov).

• Some possible cosmological implications of p-adic
string theory have been also investigated (Arefeva,
Barnaby, Joukovskaya, ...).

• It was proposed (Ghoshal) that p-adic string theories
provide lattice discretization to the world-sheet of
ordinary strings.

• As a result of these developments it follows that
many nontrivial features of ordinary strings are similar
to p-adic ones and are related to the p-adic effective
action.
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4. Lagrangians for p-Adic Sector

A. Additive approach

B.D.: hep-th/0703008v1, 0804.4114v1[hep-th],

0805.0403v1[hep-th], 0809.1601[hep-th]

• Now we want to introduce a model which incorpo-
rates all the above n-adic string Lagrangians, so to
have the Riemann zeta function. We take the sum
of the Lagrangians Ln in the form

L =
∑

n≥1

CnLn

Ln =
∑

n≥1

mD
n

g2
n

n2

n− 1
[− 1

2
φ

∑

n≥1

n
− ¤

2m2
n φ +

∑

n≥1

1

n + 1
φn+1]

which depends on the choice of coefficients Cn,
masses mn and coupling constants g2

n.

• There is a few simple and interesting cases (mn =
m, g2

n = g2):

Cn =
n− 1

n2+h

Cn =
n2 − 1

n2

Cn = µ(n)
n− 1

n2

where µ(n) is the Möbius function.
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• Let us consider the first case Cn = n−1
n2+h :

Lh =
1

g2
[− 1

2
φ

∑

n≥1

n−
¤

2m2−h φ +
∑

n≥1

n−h

n + 1
φn+1] .



• According to the famous Euler product formula one
can write ∑

n≥1

n−
¤

2m2 =
∏
p

1

1− p−
¤

2m2

.

• Recall that the Riemann zeta function is defined as

ζ(s) =
∑

n≥1

1

ns
=

∏
p

1

1− p−s
, s = σ + iτ , σ > 1 .

• We can rewrite Lagrangian in the form

Lh = − 1

g2
[
1

2
φ ζ(

¤
2m2

+ h)φ +AC
+∞∑
n=1

n−h

n + 1
φn+1] .

We shall consider this Lagrangian with analytic con-
tinuation of zeta functions and power series.
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• ζ( ¤
2m2) acts as a pseudodifferential operator in the

following way:

ζ(
¤

2m2
)φ(x) =

1

(2π)D

∫

RD

eixk ζ(− k2

2m2
) φ̃(k)dk ,

where φ̃(k) =
∫

e(−ikx) φ(x) dx is the Fourier transform
of φ(x).

• Nonlocal dynamics of this field φ is encoded in the
pseudo-differential form of the Riemann zeta function
(the d’Alembertian is an argument of the Riemann
zeta function).

• Potential of the above scalar field is equal to −Lh at
¤ = 0, i.e.

Vh(φ) =
1

g2
(
φ2

2
ζ(h)−AC

+∞∑
n=1

n−h

n + 1
φn+1)

where h 6= 1 since ζ(1) = ∞. The term with ζ-
function vanishes at h = −2,−4,−6, · · ·.

• The equation of motion in differential and integral
form is

ζ(
¤

2m2
+ h)φ = AC

+∞∑
n=1

n−h φn ,

1

(2π)D

∫

RD

eixk ζ(− k2

2m2
+ h) φ̃(k) dk = AC

+∞∑
n=1

n−h φn ,

respectively. It is clear that φ = 0 is a trivial solution
for any real h. When h > 1 we have another constant
trivial solution φ = 1.
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• In the weak field approximation (|φ(x)| ¿ 1) the above
expression becomes

∫

RD

eikx [ζ(− k2

2m2
+ h)− 1] φ̃(k) dk = 0 ,

which has a solution φ̃(k) 6= 0 if equation

ζ(
−k2

2m2
+ h) = 1

is satisfied. According to the usual relativistic kine-

matic relation k2 = −k2
0 +

−→
k

2
= −M2, equation in the

form

ζ(
M2

2m2
+ h) = 1 ,

determines mass spectrum M2 = µh m2, where set
of values of spectral function µh depends on h. The
above equation gives infinitely many tachyon mass
solutions.
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EXAMPLE (h = 0)

• The related Lagrangian is

L0 = −mD

g2
[
1

2
φ ζ(

¤
2m2

)φ + φ +
1

2
ln(1− φ)2] .

• The corresponding potential is

V0(φ) =
mD

g2
[
ζ(0)

2
φ2 + φ +

1

2
ln(1− φ)2 ] ,

where ζ(0) = −1
2
. It has two local maxima: V0(0) = 0

and V0(3) ≈ 1.443mD

g2 . There are no stable points and

limφ→1 V0(φ) = −∞ , limφ→±∞ V0(φ) = −∞ .

• The equation of motion for φ is

ζ(
¤

2m2
)φ =

1

(2π)D

∫

RD

eixk ζ(− k2

2m2
) φ̃(k)dk =

φ

1− φ
.

It has two trivial solutions: φ = 0 and φ = 3. The
solution φ = 0 is evident. The solution φ = 3 fol-
lows from the Taylor expansion of the Riemann zeta
function operator

ζ(
¤

2m2
) = ζ(0) +

∑

n≥1

ζ(n)(0)

n!
(

¤
2m2

)n , ζ(0) = −1

2
.

So far nontrivial solutions are unknown.
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• In the weak field approximation

ζ(
¤

2m2
)φ =

1

(2π)D

∫

RD

eixk ζ(− k2

2m2
) φ̃(k)dk = φ

on mass shell one obtains equation for the mass
spectrum

ζ(
m2

2
) = 1

which has infinitely many tachyon solutions.
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Case Cn = n2−1
n2

• In this case Lagrangian becomes

L =
mD

g2
[− 1

2
φ

+∞∑
n=1

(n−
¤

2m2+1 + n−
¤

2m2)φ +
+∞∑
n=1

φn+1]

and it yields

L =
mD

g2
[ − 1

2
φ {ζ( ¤

2m2
− 1) + ζ(

¤
2m2

)}φ +
φ2

1− φ
] .

• The corresponding potential is

V(φ) = −mD

g2

31− 7φ

24 (1− φ)
φ2 ,

which has the following properties: V (0) = V (31/7) =
0 , V (1 ± 0) = ±∞ , V (±∞) = −∞. At φ = 0 potential
has local maximum.

• The equation of motion is

[ζ(
¤

2m2
− 1) + ζ(

¤
2m2

)]φ =
φ((φ− 1)2 + 1)

(φ− 1)2
,

which has only φ = 0 as a constant real solution.
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Case Cn = µ(n)n−1
n2

µ(n) =





0, n = p2m

(−1)k, n = p1p2 · · · pk, pi 6= pj
1, n = 1, (k = 0) .

(1)

• In this case Lagrangian becomes

Lµ =
mD

g2
[− 1

2
φ

+∞∑
n=1

µ(n)

n
¤

2m2

φ +
+∞∑
n=1

µ(n)

n + 1
φn+1]

and it yields

Lµ =
mD

g2
[− 1

2
φ

1

ζ( ¤
2m2)

φ +

∫ φ

0

M(φ)dφ] ,

where M(φ) =
∑+∞

n=1 µ(n)φn = φ−φ2−φ3−φ5+φ6−φ7+
φ10 − φ11 − . . ..

• The corresponding potential is

Vµ(φ) = −Lµ(¤ = 0) = −mD

g2
[φ2 +

∫ φ

0

M(φ)dφ] .

• The equation of motion is

1

ζ( ¤
2m2)

φ−M(φ) = 0

which has φ = 0 as a constant real solution.
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• Its weak field approximation implies condition on the
mass spectrum

1

ζ( M2

2m2)
− 1 = 0.
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B. Multiplicative approach

B.D.: arXiv:0902.0295

Let us now consider a new approach, which is not

based on a summation of p-adic Lagrangians, but

the Riemann zeta function will emerge through its

product form. Our starting point is again p-adic

Lagrangian with equal masses, i.e. m2
p = m2 for

every p. It is useful to rewrite Lagrangian, first in

the form,

Lp =
mD

g2
p

p2

p2 − 1
{− 1

2
ϕ [p

− ¤
2m2+1

+p
− ¤

2m2 ]ϕ+ ϕp+1}

and then, by addition and substraction of ϕ2, as

Lp =
mD

g2
p

p2

p2 − 1
{1
2

ϕ [(1− p
− ¤

2m2+1
)

+(1− p
− ¤

2m2)]ϕ− ϕ2(1− ϕp−1)} .
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Now we introduce a Lagrangian for the entire p-adic

sector by taking products

∏
p

g2
p = C ,

∏
p

1

1− p−2
,

∏
p
(1− p

− ¤
2m2+1

) ,

∏
p
(1− p

− ¤
2m2)

∏
p
(1− ϕp−1)

at the corresponding places. Then this new La-

grangian becomes

L =
mD

C
ζ(2) {1

2
φ[ζ−1(

¤
2m2

− 1)

+ζ−1(
¤

2m2)]φ− φ2
∏
p

(1− φp−1)} ,

where ζ−1(s) = 1/ζ(s) and new scalar field is de-

noted by φ. For the coupling constant gp there are

two interesting possibilities: (1) g2
p = p2

p2−1
, what

yields ζ(2)/C = 1 , and (2) gp = |r|p, where r

may be any non zero rational number and it gives
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|r|∞∏
p |r|p = 1 (this possibility was already consid-

ered by Dragovich). Both these possibilities are con-

sistent with adelic product formula. For simplicity, in

the sequel we shall take C = ζ(2). It is worth noting

that having Lagrangian one can easily reproduce its

p-adic ingredient.



Let us rewrite the above Lagrangian in the simple

form

L =
1

2
φ [ζ−1(

¤
2
− 1) + ζ−1(

¤
2
)]φ− φ2 Φ(φ) ,

with m = 1 and Φ(φ) = AC∏
p(1 − φp−1), where

AC denotes analytic continuation of infinite product∏
p(1 − φp−1), which is convergent if |φ|∞ < 1. One

can easily see that Φ(0) = 1 and Φ(1) = Φ(−1) = 0.

The corresponding equation of motion is

[ζ−1(
¤
2
− 1) + ζ−1(

¤
2
)]φ = 2φΦ(φ) + φ2 Φ′(φ) ,

and has φ = 0 as a trivial solution. In the weak-field

approximation (φ(x) ¿ 1), equation becomes

[ζ−1(
¤
2
− 1) + ζ−1(

¤
2
)]φ = 2φ .

Note that the above operator-valued zeta function

can be regarded as a pseudodifferential operator.
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Mass spectrum of M2 is determined by solutions of

equation

ζ−1(
M2

2
− 1) + ζ−1(

M2

2
) = 2 .

There are infinitely many tachyon solutions, which

are below largest one M2 ≈ −3.5.

The potential follows from −L at ¤ = 0, i.e.

V(φ) = [7 + Φ(φ)]φ2 ,

since ζ(−1) = −1/12 and ζ(0) = −1/2. This

potential has local minimum V (0) = 0 and values

V (±1) = 7. To explore behavior of V (φ) for all

φ ∈ R one has first to investigate properties of the

function Φ(φ).
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It is worth noting that a Lagrangian similar to the

above one can be obtained by an additive approach.

Namely, let us start from g2
p = p2/(p2−1) and m = 1,

we have

L = −
+∞∑

n=1

µ(n)Ln =
1

2
φ [

+∞∑

n=1

µ(n)p−
¤
2+1

+
+∞∑

n=1

µ(n)p−
¤
2 ]φ−

+∞∑

n=1

µ(n)φn+1 ,

where µ(n) is the above Möbius function. Intro-

ducing zeta function one can rewrite it in the form

L =
1

2
φ [ζ−1(

¤
2
− 1)

+ζ−1(
¤
2
)]φ− φ2 F(φ) ,

where F (φ) =
∑+∞

n=1 µ(n)φn−1. The difference be-

tween two Lagrangians is only in functions Φ(φ) and

F (φ). Since Φ(φ) = (1 − φ)(1 − φ2)(1 − φ4)... =

1−φ−φ2+φ3−φ4+... and F (φ) = 1−φ−φ2−φ4+..., it

follows that these functions have the same behavior

for |φ| ¿ 1. Hence, Lagrangians have the same mass

spectrum and in weak-field approximation describe

the same scalar field theory.
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5. Concluding Remarks

• p-Adic strings are in many ways related to ordinary strings.
It seems that ordinary and p-adic strings are different faces
of an adelic string.

• p-Adic scalar tachyons at the tree level are described by
simple and exact nonlocal Lagrangian.

• All here constructed Lagrangians contain Riemann zeta
function nonlocality.

• These Lagrangians with ζ-function nonlocality are new and
significant in their own right.

• Find the corresponding string amplitudes.

• Investigate possible cosmological aspects.
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