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Kerr-Schild form of the rotating black hole solutions:

gµν = ηµν + 2Hkµkν, H =
mr − e2/2

r2 + a2 cos2 θ
. (1)

Vector field kµ(x) is tangent to Principal Null Congruence (PNC).

kµ(x) = P−1(du + Ȳ dζ + Y dζ̄ − Y Ȳ dv), (2)

where Y (x) = eiφ tan θ
2, and the null Cartesian coordinates are

2
1
2ζ = x + iy, 2

1
2 ζ̄ = x− iy, 2

1
2u = z − t, 2

1
2v = z + t. (3)

Congruence of twistors PNC is controlled by Kerr Theorem.
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Figure 1: The Kerr singular ring and the Kerr congruence.

The Kerr singular ring r = cos θ = 0 is a branch line of

space on two sheets: “negative (–)” and “positive (+)” where the

fields change their directions. In particular,

kµ(+) 6= kµ(−) ⇒ g(+)
µν 6= g(−)

µν . (4)
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Twosheetedness! Mystery of the Kerr source!

Oblate spheroidal coord. x + iy = (r + ia)eiφ sin θ, z = r cos θ,

cover spacetime twice. Disk r = 0 separates the ‘out’-sheet r > 0,

from ‘in’-sheet r < 0.

a) Closed string: E.Newman&A.Janis (JMP1964), AB (JETP1974,

PRD03), W.Israel(PRD1975). ‘Alice string’ akin to the Sen het-

erotic string solution to low-energy string theory, AB(PRD1995).

b) Rotating superconducting disk. W.Israel (PRD 1970), Hamity,

I.Tiomno (1973), C.A. L‘opez (PRD 1983)9; A.B. (1989,2000-2004),

The Kerr ring as a ‘mirror gate’ to ‘Alice’ world,.

New Look: Holographic interpretation. (AB 0903.2365[hep-

th]) based on the ideas C.R. Stephens, G. t’ Hooft and B.F. Whit-

ing (1994), ‘t Hooft (2000), Bousso (2002).

0 2 4 6 8 10 12 14 16 18 20
−8

−6

−4

−2

0

2

4

6

8

in−photons 

out−    
photons 

out−    
photons 

conformal diagram of
Minkowski space−time

unfolded conformal 
diagram of the Kerr
        space−time 

I− 

I+ 

I− 

I+ 

Figure 2: Penrose conformal diagrams. The unfolded Kerr-Schild spacetime corresponds
to the holographic structure of a quantum black-hole spacetime.
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Twosheetedness of the Kerr-Schild geometry corresponds to

holographic black-hole KS spacetime. For pure gravity BH solu-

tions, the both sheets can be used as ‘physical’ ones.

Alignment of the electromagnetic field to PNC and gravitational

field, Aµk
µ = 0 ! ⇒ PNC is in-going at r < 0, passing through

the Kerr ring to ‘positive’ sheet, r > 0, and turns into out-going.

For m > 0 the horizon exists only for r > 0 ⇒ only out-sheet

may be identified as a ‘physical sheet’ of the BH.

Stephens, t’ Hooft and Whiting (1994) predicted desirable struc-

ture of a quantum BH spacetime: the in- and out-sheets have to

be separated by a (holographically dual) boundary.

Kerr congruence performs holographic projection of 3+1 dim

bulk to 2+1 dim boundary: Y ∈ S2. “Geodesic and shear-free”

(GSF) congruences: GSF ⇔ Y,2 = Y,4 = 0 provide exten-

sion of the conformal structure from boundary S2 to bulk.

Kerr Theorem controls the GSF null congruences

kµ(x) = P−1(du + Ȳ dζ + Y dζ̄ − Y Ȳ dv). (5)

Any GSF congruence is determined by a holomorphic

function Y (x) which is solution of equation F (T a) = 0,

where F is an arbitrary analytic function of the pro-

jective twistor coordinates T a = {Y, ζ − Y v, u + Y ζ̄}.
Projective spinor Y = π1/π2 determines null direction kµ.

Twistor ≡ {xµ, πa}, or ZA = {πa, µȧ}, where µȧ = xνσ
ν
ȧaπ

a.
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The exact stationary KS solutions Debney, Kerr and

Schild (1969). A black-hole at rest: gµν = ηµν + 2Hkµkν, P =

2−1/2(1 + Y Ȳ ).

Tetrad components of electromagnetic field Fab = eµ
ae

ν
bFµν,

F12 = AZ2, F31 = γZ − (AZ),1 , (6)

here Z = −P/(r + ia cos θ) is a complex expansion of the congru-

ence. Stationarity ⇒ γ = 0.

The Kerr-Schild form of metric gµν = ηµν − 2Hkµkν, where

H =
mr − |ψ|2/2

r2 + a2 cos2 θ
, (7)

and A has the general form

A = ψ(Y )/P 2, (8)

where ψ(Y ) is an arbitrary holomorphic function of Y (x) = eiφ tan θ
2,

Y ∈ S2. Contrary to perturbative approach no smooth har-

monic solutions!

Kerr-Newman solution is exclusive: ψ(Y ) = const.

In general case there is an infinite set of the exact solutions,

in which ψ(Y ) is singular at the set of points {Yi, i = 1, 2, ...},
ψ(Y ) =

∑
i

qi
Y (x)−Yi

corresponding to angular directions φi, θi.

Twistor-beams. Poles at Yi produce half-strings: singular

lightlike beams, supported by twistor rays of the Kerr congruence.

The twistor-beams turn in the far zone into string-like exact pp-

wave solutions (A.Peres).

How act such beams on the BH horizon?
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Black holes with holes in the horizon A.B., E.Elizalde,

S.R.Hildebrandt and G.Magli, Phys. Rev. D74 (2006) 021502(R)

Singular beams lead to formation of the holes in the black hole

horizon, which opens up the interior of the “black hole” to external

space.
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Figure 3: Near extremal black hole with a hole in the horizon, caused by by lightlike
singular beam. The event horizon is a closed surface surrounded by surface g00 = 0.
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Figure 4: Singular beam forms a small hole in the horizon.
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Time-dependent solutions of DKS equations for elec-

tromagnetic excitations, γ 6= 0, A.B. (2004-2008)

a) Exact solutions for electromagnetic field on the Kerr-Schild

background, (2004),

b) Asymptotically exact wave solutions, consistent with Kerr-Schild

gravity in the low frequency limit, (2006)

c) Exact solutions, consistent with gravity for regularized and av-

eraged stress-energy tensor, (2008)

Electromagnetic field is determined by functions A and γ,

A,2−2Z−1Z̄Y,3 A = 0, A,4 = 0, (9)

DA + Z̄−1γ,2−Z−1Y,3 γ = 0, (10)

and

Gravitational sector: has two equations for function M,

which take into account the action of electromagnetic field

M,2−3Z−1Z̄Y,3 M = Aγ̄Z̄, (11)

DM =
1

2
γγ̄. (12)

Operator D is

D = ∂3 − Z−1Y,3 ∂1 − Z̄−1Ȳ ,3 ∂2 . (13)

Similar to the exact stationary solutions, there are no ex-

act wave solutions with smooth angular dependence!

Typical solutions contain outgoing singular beam pulses which

have very strong back reaction to metric and perforate horizon.
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Treatment of the back reaction of the vacuum fluc-

tuations on the horizon and metric was initiated by J.York

(1983) with spherical zero-point excitations (quasi-normal modes)

and then Parikh and Wilczek (2001): spherical deformation of the

metric and horizon. It was also supported by loop quantum gravity

(C. Rovelli, 1996) and Jiang, S. Wu, and X. Cai (2006), J. Zhang,

and Z. Zhao (2006) .... However, only the simplest deformations of

the horizon, caused by spherical or ellipsoidal quasi-normal modes.

Twistor-beams. Exact stationary and time-dependent Kerr-Schild

solutions show that ‘elementary’ electromagnetic excitations have

singular beams supported by twistor lines. Interaction of a black-

hole with electromagnetic vacuum fluctuations resulted in a fine-

grained structure of the horizon pierced by fluctuating microholes.

Figure 5: Excitations of a black hole by electromagnetic vacuum creates twistor-beams
creating a horizon covered by fluctuating micro-holes.

8



Solutions of electromagnetic sector.

GSF condition: Y,2 = Y,4 = 0,⇒ alignment kµ∂µY = 0 ⇒
exact stationary Kerr-Schild solutions (DKS 1969)

A = ψP−2, where ψ,2 = ψ,4 = 0 ⇒ ψ(Y ) ⇒ kµ∂µψ = 0.

Time-dependent solutions (A.B. 2004):

a complex retarded time τ, alignment condition: τ,2 = τ,4 = 0

⇒ extra term γ(Y, τ ) caused by time-dependence of ψ(Y, τ ).

Integration yields

γ =
21/2ψ̇

P 2Y
+ φ(Y, τ )/P, (14)

and shows that time-dependence, ψ̇ =
∑

i ċi(τ )/(Y − Yi) 6= 0,

creates generally the poles in γ ∼ ∑
i qi/(Y − Yi), leading to

twistor-beams in directions Yi = eiφi tan θi
2 .

Regularization.

Tuning of the free function φ(Y, τ )

φtuned(Y, τ ) =
1

Y Pi(Y )
(ci(τ )Φn(Y )− 1

Y − Yi
), (15)

where Pi(Y ) = (1 + Y Ȳi)/
√

2 and Φn(Y ) =
∏n

i (Y − Yi), allows

one to regularize γ by cancelling the poles

γreg = γψ − φtuned/P = −
∑

i

ci(Y − Yi)Φn(Y )

Y P 2
(16)

and to get stress-energy tensor leading to the exact and consistent

with KS gravity solutions in the low-frequency limit.
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Quantum gravity approach suggested by B.DeWitt:

1) Solutions of the Maxwell eqs. on the curved background⇒ T µν,

2) Quantization of the electromagnetic field and regularization of

stress-energy tensor: T µν
reg = T µν− < 0|T µν|0 >,

3) Classical Einstein equations for the regularized rhs.

Rµν − 1

2
Rgµν = − 1

8π
T µν

reg. (17)

We obtained (arXiv: 0903.2365; PLB 671 486(2009)) the clas-

sical time-dependent solutions for electromagnetic excitations on

the BH background, twistor-beams, and back reaction of the beams

to the metric and horizon. The solutions are exact and consistent to

the Einstein equations with regularized and averaged stress-energy

tensor Rµν − 1
2Rgµν = − 1

8π < T µν
reg >

Regularization is also classical and is applied only to term γ

which determines T µν = P 1
2γ̄γkµkν. The term ψ(Y, τ ) is not reg-

ularized.

gµν = ηµν + 2Hkµkν, H =
mr − |ψ(Y, τ )|/2

r2 + a2 cos2 θ
. (18)

The obtained solutions are time-dependent and describe the

twistor-beam fluctuations of the electromagnetic vacuum and the

beam-like back reaction to metric and horizon. The obtained Kerr-

Schild solutions showed the existence of a classical fine-grained

Pre-Quantum geometry which takes an intermediate

position between the Quantum and the usual ‘smooth’

Classical gravity.
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Singular pp-wave solutions (A.Peres)

Self-consistent solution of the Einstein-Maxwell equations: sin-

gular plane-fronted waves (pp-waves). Kerr-Schild form with a

constant vector kµ =
√

2du = dz − dt

gµν = ηµν + 2hkµkν.

Function h determines the Ricci tensor

Rµν = −kµkν¤h, (19)

where ¤ is a flat D’Alembertian

¤ = 2∂ζ∂ζ̄ + 2∂u∂v . (20)

The Maxwell equations take the form ¤A = J = 0, and can

easily be integrated leading to the solutions

A+ = [Φ+(ζ) + Φ−(ζ̄)]f+(u)du, (21)

(22)

where Φ± are arbitrary analytic functions, and function f+ de-

scribes retarded waves.

The poles in Φ+(ζ) and Φ−(ζ̄) lead to the appearance of singular

lightlike beams (pp-waves) which propagate along the z+ semi-axis.

pp-waves have very important quantum properties, being exact

solutions in string theory with vanishing all quantum corrections (

G.T. Horowitz, A.R. Steif, PRL 64 (1990) 260; A.A. Coley, PRL

89 (2002) 281601.)
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Quadratic generating function F(Y) and interpreta-

tion of parameters. A.B. and G. Magli, Phys.Rev.D 61044017

(2000).

The considered in DKS function F is quadratic in Y ,

F ≡ a0 + a1Y + a2Y
2 + (qY + c)λ1 − (pY + q̄)λ2, (23)

where the coefficients c and p are real constants and a0, a1, a2, q, q̄,

are complex constants. The Killing vector of the solution is deter-

mined as

K̂ = c∂u + q̄∂ζ + q∂ζ̄ − p∂v. (24)

Writing the function F in the form

F = AY 2 + BY + C, (25)

one can find two solutions of the equation F = 0 for the function

Y (x)

Y1,2 = (−B ±∆)/2A, (26)

where ∆ = (B2 − 4AC)1/2.

We have also

r̃ = −∂F/∂Y = −2AY −B, (27)

and consequently

r̃ = PZ−1 = ∓∆. (28)

These two roots reflect the known twofoldedness of the Kerr ge-

ometry. They correspond to two different directions of congruence
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on positive and negative sheets of the Kerr space-time. In the

stationary case

P = pY Ȳ + q̄Ȳ + qY + c . (29)

Link to the complex world line of the source. The stationary

and boosted Kerr geometries are described by a straight complex

world line with a real 3-velocity ~v in CM 4:

xµ
0(τ ) = xµ

0(0) + ξµτ ; ξµ = (1, ~v) . (30)

The gauge of the complex parameter τ is chosen in such a way that

Re τ corresponds to the real time t.

K̂ is a Killing vector of the solution

K̂ = ∂τx
µ
0(τ )∂µ = ξµ∂µ . (31)

P = K̂ρ = ∂τx
µ
0(τ )e3

µ , (32)

where

ρ = λ2 + Ȳ λ1 = xµe3
µ. (33)

It allows one to set the relation between the parameters p, c, q, q̄,

and ξµ, showing that these parameters are connected with the

boost of the source.

The complex initial position of the complex world line xµ
0(0) in

Eq. (30) gives six parameters for the solution, which are connected

to the coefficients a0, a1 a2 . It can be decomposed as ~x0(0) =

~c + i~d, where ~c and ~d are real 3-vectors with respect to the space
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O(3)-rotation. The real part ~c defines the initial position of the

source, and the imaginary part ~d defines the value and direction of

the angular momentum (or the size and orientation of a singular

ring).

It can be easily shown that in the rest frame, when ~v = 0, ~d =
~d0, the singular ring lies in the orthogonal to ~d plane and has a

radius a = |~d0|. The corresponding angular momentum is ~J =

m~d0.
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Smooth and regular Kerr sources.

A.B., E. Elizalde, S.Hildebrandt and G. Magli, PRD (2002)

The Gürses and Gürsey ansatz gµν = ηµν + 2hkµkν,

where h = f (r)/(r2 + a2 cos2 θ).

Regularized solutions have tree regions:

i) the Kerr-Newman exterior, r > r0, where f (r) = mr− e2/2,

ii) interior r < r0−δ, where f (r) = fint and function fint = αrn,

and n ≥ 4 to suppress the singularity at r = 0, and provide the

smoothness of the metric up to the second derivatives.

iii) a narrow intermediate region providing a smooth interpola-

tion between i) and ii).

Non-rotating case: by n = 4 and α = 8πΛ/6,

interior is a space-time of constant curvature R = −24α.

Energy density of source ρ = 1
4π(f ′r − f )/Σ2,

tangential and radial pressures prad = −ρ, ptan = ρ− 1
8πf ′′/Σ,

where Σ = r2.

There is a de Sitter interior for α > 0, and anti de Sitter interior

for α < 0. Interior is flat if α = 0.

The resulting sources may be considered as the bags filled by a

special matter with positive (α > 0) or negative (α < 0) energy

density. The transfer from the external electro-vacuum solution to

the internal region (source) may be considered as a phase transition

from ‘true’ to ‘false’ vacuum. Assuming that transition region

iii) is very thin, one can consider the following useful graphical

representation.
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Figure 6: Regularization of the Kerr spinning particle by matching the external field with
dS, flat or AdS interior.

The point of phase transition r0 is determined by the equation

fint(r0) = fKN(r0) which yields

m =
e2

2r0
+

4

3
πr3

0ρ. (34)

The first term on the right side is electromagnetic mass of a

charged sphere with radius r0, Mem(r0) = e2

2r0
, while the second

term is the mass of this sphere filled by a material with a homoge-

nous density ρ, Mm = 4
3πr3

0ρ. Thus, the point of intersection r0

acquires a deep physical meaning, providing the energy balance by

the mass formation.

Transfer to rotating case. One has to set Σ = r2+a2 cos2 θ,

and consider r and θ as the oblate spheroidal coordinates.
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The Kerr source represents a disk with the boundary r = r0

which rotates rigidly. In the corotating with disk coordinate sys-

tem, the matter of the disk looks homogenous distributed, however,

because of the relativistic effects the energy-momentum tensor in-

creases strongly near the boundary of the disk.
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Figure 7: Matching the (rotating) internal “de Sitter” source with the external Kerr-
Schild field. The dotted line f1(r) = (r2 + a2)/2 determines graphically the position of
horizons as the roots of the equation f(r) = f1(r).

In the limit of a very thin disk a stringy singularity develops

on the border of disk. This case corresponds to the Israel-Hamity

source 1970-1976.

The Kerr-Newman spinning particle with J = 1
2~, acquires

the form of a relativistically rotating disk which has the form of a

highly oblate ellipsoid with the thickness r0 ∼ re and the Comp-

ton radius a = 1
2~/m. Interior of the disk represents a “false”

17



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

r
−
 

r
+
 

horizons 

M=1 

M=1.2 

a=1 

r
0
 r

0
 r

0
 

M=0.25 
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4πρ
)1/3. The formation of the black hole horizons is shown for a2 < M2.

vacuum having superconducting properties which are modelled by

the Higgs field.
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Properties of the disklike Kerr source

• the disk is oblate and rigidly rotating,

• the rotation is relativistic, so the board of the disk is moving

with the speed which is close to the speed of light,

• the stress-energy tensor of the matter of the disk has an exotic

form resembling a special condensed vacuum state (de Sitter,

flat or anti de Sitter vacua).

• electromagnetic properties of the matter of the disk are close

to superconductor,

• the charge, strong magnetic and gravitational fields are con-

centrated on the stringy board of the disk, and are partially

compensated from the oppositely charged part of the disk sur-

face. It yields a very specific form of the electromagnetic field

(see fig.4, and fig.5).

• finally, the main property of Kerr-Schild source - the relation

J = Ma between the angular momentum J , mass M , and the

radius of the Kerr ring a.
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Complex Kerr source, complex shift. Appel 1887!

A point-like charge e, placed on the complex z-axis (x0, y0, z0) =

(0, 0, ia), gives the real Appel potential

φa = Re e/r̃, (35)

where r̃ = r + ia cos θ is the Kerr complex radial coordinate and

r and θ are the oblate spheroidal coordinates. In the Cartesian

coordinates x, y, z, t

r̃ = [(x−x0)
2 +(y− y0)

2 +(z− z0)
2]1/2 = [x2 + y2 +(z− ia)2]1/2.

(36)

Singularity of the Appel potential φa corresponds to r = cos θ =

0, and therefore, the singular ring z = 0, x2+y2 = a2 is a branch

line of space-time for two sheets, just similar to the Kerr singular

ring.

Appel potential describes exactly the em field of the Kerr-Newman

solution on the auxiliary M 4.
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Complex world line and complex Kerr string.

If the Appel source is shifted to a complex point of space (xo, yo, zo) →
(0, 0, ia), it can be considered as a mysterious ”particle” propagat-

ing along a complex world-line xµ
0(τ ) in CM 4 and parametrized

by a complex time τ . The complex source of the Kerr-Newman

solution has just the same origin and can be described by means

of a complex retarded-time construction for the Kerr geometry.

The objects described by the complex world-lines occupy an

intermediate position between particle and string. Like a string

they form two-dimensional surfaces or world-sheets in space-time.

In many respects this source is similar to the ”mysterious” N = 2

complex string of superstring theory.

The Kerr congruence may be understood as a track of the null

planes of the family of complex light cones emanating from the

points of the complex world line xµ
0(τ ) in the retarded-time con-

struction.
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Complex retarded-time parameter.

Parameter τ may be defined for each point x of the Kerr space-

time and plays the role of a complex retarded-time parameter. Its

value for a given point x may be defined by L-projection, using the

solution Y (x) and forming the twistor parameters λ1, λ2 which

fix a left null plane. The points xµ and xµ
0 are connected by the

left null plane spanned by the null vectors e1 and e3.

The point of intersection of this plane with the complex world-

line x0(τ ) gives the value of the ”left” retarded time τL, which is in

fact a complex scalar function on the (complex) space-time τL(x).

By using the null plane equation, one can get a retarded-advanced

time equation

τ = t∓ r̃ + ~v ~R. (37)

For the stationary Kerr solution r̃ = r + ia cos θ, and one can see

that the second root Y2(x) corresponds to a transfer to the negative

sheet of the metric: r → −r; ~R → −~R, with a simultaneous

complex conjugation ia → −ia.
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The analytical twistorial structure of the Kerr spinning particle

leads to the appearance of an extra axial stringy system. As a

result, the Kerr spinning particle acquires a simple stringy skeleton

which is formed by a topological coupling of the Kerr circular string

and the axial stringy system. The projective spinor coordinate Y

is a projection of sphere on complex plane. It is singular at θ = π,

and such a singularity will be present in any holomorphic function

ψ(Y ). Therefore, all the aligned e.m. solutions turn out to be

singular at some angular direction θ. The simplest modes

ψn = qY n exp iωnτ ≡ q(tan
θ

2
)n exp i(nφ + ωnτ ) (38)

can be numbered by index n = ±1,±2, ....

The leading wave terms are

F|wave = fR dζ ∧ du + fL dζ̄ ∧ dv, (39)

where

fR = (AZ),1 ; fL = 2Y ψ(Z/P )2 + Y 2(AZ),1 (40)

are the factors describing the “left” and “right” waves propagating

along the z− and z+ semi-axis correspondingly.

The parameter τ = t − r − ia cos θ takes near the z-axis the

values τ+ = τ |z+ = t− z − ia, τ− = τ |z− = t + z + ia.

The leading wave for n = 1,

F−
1 = 4qei2φ+iω1τ−

ρ2 dζ̄ ∧ dv,

propagates to z = −∞ along the z− semi-axis.
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The leading wave for n = −1,

F+
−1 = −4qe−i2φ+iω−1τ+

ρ2 dζ ∧ du,

is singular at z+ semi-axis and propagates to z = +∞.

The n = ±1 partial solutions represent asymptotically the sin-

gular plane-fronted e.m. waves propagating without damping.

−20
−10

0
10

20

−20

−10

0

10

20

−20

−15

−10

−5

0

5

10

15

20

 

Figure 9: The Kerr disk-like source and two axial semi-infinite beams.
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