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Open strings vs. closed strings

» S-matrix:
closed string poles in open string scattering amplitudes
unitarity in OSFT?

» 2d string theory (Liouville): explicit duality
» tachyon condensation: open string completeness conjecture

> topological string theory: e.g. Hochschild complex



Open strings vs. closed strings

» BCFT: open and closed string moduli

» open moduli space changes significantly under closed string
deformations

» dramatic effects on D-branes
[MB, Brunner, Gaberdiel, 2007]

[MB, Wood, 2008]

» how do closed string deformations appear in OSFT?

» background (in)dependence?
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BSFT in a nutshell

> S =[5 L(Guvi Buvi X¥) + [55 b(t"; X*)

> L defines a CFT as ‘background’ with massless fields as moduli

» b is a boundary term with a ‘complete’ set of couplings t’

ab(t))
at! t/=0

» b breaks conformal invariance (on the boundary only)

> and vertex operators V; =

» classical solutions of SFT: ghost + matter CFT

» idea: consider the space of all boundary deformations O (ghost

number 1)
S= Smatter + Sghosts + f b—l o
bflszHany QB:‘fCHaDJB



BSFT in a nutshell

» construct action via BV:

use master equation (choose anti-bracket) + classical
solutions

» SFT action (form on coupling space):

de(%dﬁ{QB,?{ﬁ’}>

» matter/ghost decoupling: & = c¥ = ct'¥;

[Witten]

S = (1 —ﬁ’(t)aat,) Z(t)

[Shatashvili]

» generating functional Z(t') = [ DX e SX]



Space of boundary couplings

» consider flat background R12® with string field X
derivative expansion:
V(X) = T(X)+ Au(X)XH + massive modes
> Z is a functional of infinitely many modes (renormalizability!)
> these might be expansions of non-local interactions [Li, Witten]
$$ X (o)u(o,06")X(0’) can be expanded in
derivatives ¥, _¢'Xt,7é){<,”)X with u" =Y . (in)"tm,
» such ‘collectively excited’ couplings appear naturally and get
interpretation from closed string sector



Background dependence?

'//:(GuwBuv) — ///:(G,L/zvaL
» OS spectrum may change
» OS B-equations may change
>

OS conformal point shifted t, — t.
BSFT action . = (1 — B'9))Z defined pointwise

v

NB: reminiscent of the situation in open-closed moduli spaces,

Picard-Fuchs equation systems

v)



Background independence!

'///:(GMWB#V) — ( [,va )

7 a(th — St + At 1)

» new open string background t, = t, + At

v

the original couplings t' still describe the open strings

> surprise: no need to integrate out closed strings, due to a
factorization property; no higher order o’ terms in the
boundary interaction term b

Zyw=2%Zy

» but: generically non-local couplings ©/ appear
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Re-formulation of BSFT

splitting of fields

» how to parametrize space of boundary-deformed 2d CFTs?

» {space of boundary deformations} «— {space of functions f
on S'}

(also parametrizes all boundary conditions, after integration)

» unique decomposition: X = Xg+ X}
where X0| = xp (D0) and AXp =0 (harmonic)

» thus X, = Xp[f] with Xp(7,0)| = f(0)
» S(X) = [d?z29XdX = S5(Xo)+ S(Xp) + W(Xo, Xp)

» with S(Xp) = §dodo’ f(o)H(o —o’)f(o’)
» and H(c) =Y, § do|n|e®



Re-formulation of BSFT

more on the boundary action

» boundary data f(o) can be decomposed by
holomorphic/anti-holomorphic extendibility on the disk

» (o) =fi(o)+f(0)
i (2) +F(2) = F(2,2) = Xp(2,2)

» action of H: Hf = dsfy — dsf- = InXp

» boundary action: ¢ fidf- = ¢ XpdpXp
observation: 2-cocycle



Re-formulation of BSFT

partition function

» replace Z[t] by Z[f]
Z[f] — partition function with fixed boundary conditions f:
Z[t] = [ Df e 1 Z[f]

> path-integral factorizes:

Z[f] = / DXg e~ SVl 5 =511 = 7, =511
DO b.c.

» no ‘interaction’ between ‘bulk part’ and ‘boundary part’ of X

» Xp has not been ‘integrated out'! l.e. arbitrary boundary
interactions allowed



Re-formulation of BSFT

partition function

» factorization allows to re-define BSFT-action

(requires choice of measure for f-path-integral)
S S =S %
» everything formulated in terms of ‘boundary fields’ f

» =/ % is well-defined
» change in closed string background can be studied in BSFT

» how generic is this factorization property?



Simple examples

Starting from the free boson .# = (Guy = Nyuv, Buv =0, R)
> a shift in the Kalb-Ramond field yields
5By 7{ XFdXy  — gauge field

> a shift in the compactification radius R yields

SR
o f Xo9 X,
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Remarks on WZW, closed string only

v

model for non-trivial (flat) closed string background

v

Swzw(g) = kL(g) + kT (g)

L= Trfg_lagg_lag
F=Tr ws

ws = (dgg 1)"3

for w3 extension of g to interior of closed worldsheet necessary

v

v

no ambiguities in partition function



Remarks on boundary WZW

» for simplicity assume H® =0
> w3 can be pulled to the boundary, wz = dw»
» ambiguity: w, defined up to closed form dff

» thus for the action one needs to specify a one-form f3:

r5:r+]{ﬁ

» [ lives on the boundary only

» some assumptions needed to fix B (below)



Factorization for boundary WZW

» Splitting of the fields:

g=gok in analogy to X = Xo+ Xp
k = h(z)h(2) in analogy to Xp = f1(z) 4+ f-(2)

> go satisfies DO-boundary conditions, go| = const
k satisfies classical EOM, dkk 1 =0=k~ 1ok

» S(gok) determined by Polyakov-Wiegmann formula, but needs
extension for boundary WZW



Boundary Polyakov-Wiegmann

» only ' may be problematic.
for closed string: ws(g1g2) = wa(g1) +wa(g2) + G(e1. )
» for open string one can show, that
w3(g182) — ws(g1) — wa(g2) — G(g1,82) is a 2-cocycle on LG
> and its integral over the worldsheet depends only on its values
on the boundary and is independent of the choice of extension

» for g = go k this integral vanishes
> finally,

Swzw (g) = Swzw(go) + L(k) + TP (k) + W(go, k)

with W (go, k) = Tr [ g, 1dgodkk !



Factorization

Swzw(g) = Swzw(go) + L(k) + TP (k) + W(go, k)

v

a priori no decoupling of gy and k, due to presence of W

v

but still, the partition function factorizes (main technical resuit):

<<Tr/g0_1<§g08kk_1> > =0
&0

thus W does not contribute
Z[k] = Zoe > s still true

v

v
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The boundary action

S(k) = L(k)+T5B (k)

» explicit expression wanted
» using the Ansatz k(z,Z) = h(z)h(z) and boundary
Polyakov-Wiegmann, we get

er:_um+/awj)

where o is a 2-cocycle
> therefore factorization gives

Z[k] = Zy o~ Ja(hh)—§B

» we cannot calculate the boundary action, but we can make a
guess based on some basic properties



The boundary action

the chosen action must ...

» ... lead to the same algebraic boundary conditions
as the ‘full’ WZW model

> ... obey the cocycle conditions
> ... give the correct large-radius limit

» our Ansatz:
S= L(k):/k-lakk—lék:/h—lahém—l

(can be written as a surface integral)



The boundary action

the chosen action must ...

» ... lead to the same algebraic boundary conditions
as the ‘full’ WZW model

> ... obey the cocycle conditions
> ... give the correct large-radius limit

» our Ansatz:
S=1L(k)= /k-lakk—lék: /h—lahéﬁﬁ—l
(can be written as a surface integral)

... SL(2), SU(2), Nappi-Witten ...
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Curved background, an example

WZW on SU(2)

> symmetries

v

maximally symmetric D-branes known < conjugacy classes,
discrete

> parametrization:
K — @iAXH Ty

1 .
A — K2, expansion parameter
T — generators of SU(2)
large radius limit: A -0 & K—oo

in the same way:

v

h(Z) _ eilff Ty ;’(2) _ ei)Lff Tu



Coordinates

Relation between flat and curved coordinates

Xt = '+ — Leyyicf) £+ O(A?)

» continuation: fy — f(2) f —f(z)

» technical issue: enforces SU(2)®



Non-local deformations

> definition of a path-integral:
/[5kk*1}e G [Tk

> express everything in f,f

> action:

S=s i mfm?m—;“{Va—Va+Avﬁ+Avy+M‘/y}
m=1

Vo =Y (c— b)8acipuva fE )

c—b)(a—d .
Vg = Z%‘Sﬁrbﬁawfcﬁl fbvfau fav

2 oo
Vi=3 Y (a—b—d)bcarpiafl foufy fay



Non-local deformations

» contribution from measure:

Smeasure - 412 Z fn?n

» include quadratic tachyon

Stachyon = j{ T(X) =a+ UZ fn?n



Non-local deformations

» contribution from measure:
Smeasure == 412 Z fnfn

(tachyon forced into existence!)

» include quadratic tachyon

Stachyon = j{ T(X) =a+ UZ fn?n



RG flow

— non-local deformation (keep symmetry)
a,u — control tachyon condensation

B-functions

» A increases
» tachyon condensation is modified

» obvious endpoint: a =0, u=-oo (but there is more...)
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Condensation of the 3-brane

» non-vanishing tachyon makes 3-brane unstable
» can we identify a process D3 — D27

» assume a tachyon interaction
Fp(X2=)® = pc' —4pc Y. fifa + (F)

» p,c? are the ‘natural couplings', in which a condensation to
spherical brane is described

> re-write the B-functions:

Be2=4-8A7

Bo = —% (c2 —16c2A2 +4)



Condensation of the 3-brane

» for a 2-brane solution we would expect finite ¢? and running p
(A fixed)
» such a solution is
1
2 _ 71—2

<72

ﬁc2 =0

Bp = —p(1-81?)

v

this tells us: p will increase

v

geometry: determined by A (curvature)

v

A — 0 gives a flat brane (flat space limit)



A—c2-flow

» running of c? is strongly modified by the presence of A
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Verification of the solution

» Ansatz for D2-solution was a ‘guess’

» independent verification:

» insert constraint X2 = ¢2 into action
» verify conformality

» complicated — look for stability check

d-1
1 . 1 m—1m-1 o
=520 @ aasfiFlraferfie  Bi=3 S Mfaafl ofes T2,
a=1d=2 e=1 el S et
A = A Z m—1m—1
o 5l 7 By = 7”faafm afbﬁfm b
Ar =373 (d=a)easfe flralera, 2 o
a=1c=1d=2 1 m—1m-1
Ay = A} Bz = 3 Z7rLfﬂthm afbﬁfm b
atb—1 m=2 a=1 b=
3 (a—Deasf o Fnflie s o — w a P
a cfru it 9 1 L= c+d afcﬂfb fdﬁ a+b,c+d
Ay = A 1 o
. . Cr=3 D (e=a=0)Ffuleoflinse
Ay = 2 E Z Z(a —bleapfa fp fC’YfJ+b+c _ a,b,c,d=1
a=1b=1c=1 Cy=C3.

Ay = A



Stability of the 2-brane

» consider case with vanishing tachyon

» will the tachyon be excited at higher loops?

» the tachyon counter-term:

402 8 A?
253 352c2
+InA{terms o< u} + O(A*)

Y@ (p=0)=[AInA+(y—1)A] {

» all divergences vanish under a single condition:
2=a(s)A 2

» no ‘fine-tuning’ necessary



Interpretation

On the three-brane:
» A excites infinitely many massive couplings
» affects stability of D-branes
» tachyon condensation process initiated and modified
» qualitatively new RG flows
» A is running, c? can be kept finite, p is running &

condensating

> breakdown of predictability — 2-brane Ansatz

On the two-brane:
» a priori tachyonic instability

» instability removed by essentially same condition on ¢? as on

three-brane
» tachyon can be set to zero without fine-tuning
» indicates that 2-brane is conformal

» A really seems to interpolate between flat and curved space
— supports interpretation of A as closed string perturbation



Perspectives

» higher order B-functions, more examples, better methods
> better control over flow

» other WZW-branes, potential

» backgrounds other than WZW

> supersymmetry

> systematic investigation of open-closed modulispaces, better
statements on background independence

» boundary state formalism, possibly access to closed string
vacuum

» connections to T-folds? Defect CFTs?
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