BSFT and Closed Strings

Marco Baumgartl

Arnold-Sommerfeld Center for Theoretical Physics, LMU Munich and Excellence Cluster Universe

> SFT09 Stelkov Mathematical Institute Moscow, April 2009

> > ▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

MB, I. Sachs, S. Shatashvili, 2004 MB, I. Sachs, 2006 MB, I. Sachs, 2008 MB, 2008

Open strings vs. closed strings

S-matrix:

closed string poles in open string scattering amplitudes *unitarity in OSFT*?

- 2d string theory (Liouville): explicit duality
- tachyon condensation: open string completeness conjecture

topological string theory: e.g. Hochschild complex

Open strings vs. closed strings

- BCFT: open and closed string moduli
- open moduli space changes significantly under closed string deformations

dramatic effects on D-branes

[MB, Brunner, Gaberdiel, 2007]

[MB, Wood, 2008]

- how do closed string deformations appear in OSFT?
- background (in)dependence?

Outline

Introduction

BSFT approach BSFT in a nutshell Factorization

BSFT on WZW

Factorization for boundary WZW BSFT action

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Curved background, an example SU(2) Tachyon condensation

Outline

Introduction

BSFT approach BSFT in a nutshell

Factorization

BSFT on WZW

Factorization for boundary WZW BSFT action

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Curved background, an example SU(2) Tachyon condensation

BSFT in a nutshell

$$S = \int_{\Sigma} L(G_{\mu\nu}; B_{\mu\nu}; X^{\mu}) + \int_{\partial \Sigma} b(t'; X^{\mu})$$

- L defines a CFT as 'background' with massless fields as moduli
- b is a boundary term with a 'complete' set of couplings t'
- and vertex operators $V_I = \frac{\partial b(t^J)}{\partial t^I}\Big|_{t^J=0}$
- b breaks conformal invariance (on the boundary only)
- classical solutions of SFT: ghost + matter CFT
- idea: consider the space of all boundary deformations O (ghost number 1)

$$S = S_{\text{matter}} + S_{\text{ghosts}} + \oint b_{-1} \mathcal{O}$$
$$b_{-1} = \oint_{C \to \partial D} b, \quad Q_B = \oint_{C \to \partial D} J_B$$

BSFT in a nutshell

- construct action via BV: use master equation (choose anti-bracket) + classical solutions
- SFT action (form on coupling space):

$$d\mathscr{S} = \langle \oint d\mathscr{O} \left\{ Q_B, \oint \mathscr{O} \right\} \rangle$$

Γ	И	/i	tt	e	n

• matter/ghost decoupling: $\mathcal{O} = c\mathcal{V} = ct^{I}\mathcal{V}_{I}$

$$\mathscr{S} = \left(1 - \beta'(t) \frac{\partial}{\partial t'}\right) \mathscr{Z}(t)$$

[Shatashvili]

• generating functional $\mathscr{Z}(t') = \int DX \ e^{-S[X]}$

Space of boundary couplings

- consider flat background ℝ^{1,25} with string field X derivative expansion:
 𝒱(X) = 𝒯(X) + 𝑋_µ(X)X^µ + massive modes
- S is a functional of infinitely many modes (renormalizability!)
- these might be expansions of non-local interactions [Li, Witten]

 $\oint \oint X(\sigma)u(\sigma,\sigma')X(\sigma') \text{ can be expanded in}$ derivatives $\sum_n \oint Xt_n \partial_{\sigma}^{(n)} X$ with $u^n = \sum_m (in)^m t_m$

 such 'collectively excited' couplings appear naturally and get interpretation from closed string sector

Background dependence?

$$\mathscr{M} = (G_{\mu\nu}, B_{\mu\nu}) \qquad \longleftrightarrow \qquad \mathscr{M}' = (G'_{\mu\nu}, B'_{\mu\nu})$$

- OS spectrum may change
- OS β -equations may change
- OS conformal point shifted $t_* \rightarrow t'_*$
- ▶ BSFT action $\mathscr{S} = (1 \beta^{I} \partial_{I}) \mathscr{Z}$ defined pointwise

NB: reminiscent of the situation in open-closed moduli spaces, Picard-Fuchs equation systems

Background independence!

$$\begin{split} \mathscr{M} &= (G_{\mu
u}, B_{\mu
u}) & \longleftrightarrow & \mathscr{M}' &= (G'_{\mu
u}, B'_{\mu
u}) \ & \mathscr{S}_{\mathscr{M}'}(t') & \longleftrightarrow & \mathscr{S}_{\mathscr{M}'}(t' + \Delta t'; au') \end{split}$$

- new open string background $t'_* = t_* + \Delta t$
- the original couplings t^{I} still describe the open strings
- surprise: no need to integrate out closed strings, due to a factorization property; no higher order α' terms in the boundary interaction term b

$$\mathscr{Z}_{\mathscr{M}} = \mathscr{Z}_0 \, \mathscr{Z}_{\mathscr{M}'}$$

• but: generically non-local couplings au' appear

Outline

Introduction

BSFT approach BSFT in a nutshell Factorization

BSFT on WZW

Factorization for boundary WZW BSFT action

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Curved background, an example SU(2) Tachyon condensation

splitting of fields

- how to parametrize space of boundary-deformed 2d CFTs?
- {space of boundary deformations} ←→ {space of functions f
 on S¹}

(also parametrizes all boundary conditions, after integration)

• unique decomposition: $X = X_0 + X_b$ where $X_0 | = x_0$ (D0) and $\Delta X_b = 0$ (harmonic)

• thus $X_b = X_b[f]$ with $X_b(\tau, \sigma)| = f(\sigma)$

•
$$S(X) = \int d^2 z \, \partial X \bar{\partial} X = S(X_0) + S(X_b) + W(X_0, X_b)$$

• with
$$S(X_b) = \oint d\sigma d\sigma' f(\sigma) H(\sigma - \sigma') f(\sigma')$$

• and
$$H(\sigma) = \sum_n \oint d\sigma |n| e^{in\sigma}$$

more on the boundary action

 boundary data f(σ) can be decomposed by holomorphic/anti-holomorphic extendibility on the disk

►
$$f(\sigma) = f_+(\sigma) + f_-(\sigma)$$

 $\longrightarrow f_+(z) + f_-(\bar{z}) = f(z, \bar{z}) = X_b(z, \bar{z})$
► action of H : $Hf = \partial_{\sigma}f_+ - \partial_{\sigma}f_- = \partial_nX_b$

boundary action: ∮ f₊df₋ = ∮ X_b∂_nX_b observation: 2-cocycle

partition function

- replace *L*[t] by *L*[f]
 L[f] partition function with fixed boundary conditions f:
 L[t] = ∫ Df e^{-I[t]} *L*[f]
- path-integral factorizes:

$$\mathscr{Z}[f] = \int_{\text{D0 b.c.}} DX_0 \ e^{-\mathcal{S}[X_0]} \times e^{-\tilde{\mathcal{S}}[f]} = Z_0 \ e^{-\tilde{\mathcal{S}}[f]}$$

- ▶ no 'interaction' between 'bulk part' and 'boundary part' of X
- ► X₀ has not been 'integrated out'! I.e. arbitrary boundary interactions allowed

partition function

 factorization allows to re-define BSFT-action (requires choice of measure for f-path-integral)

$$\mathscr{S} \longrightarrow \mathscr{S}' = \mathscr{S} / \mathscr{Z}_0$$

- everything formulated in terms of 'boundary fields' f
- $\mathscr{S}' = \mathscr{S}/\mathscr{Z}_0$ is well-defined
- change in closed string background can be studied in BSFT

how generic is this factorization property?

Simple examples

Starting from the free boson $\mathscr{M} = (G_{\mu\nu} = \eta_{\mu\nu}, B_{\mu\nu} = 0, R)$

a shift in the Kalb-Ramond field yields

$$\delta B_{\mu
u} \oint X^{\mu}_b dX^{
u}_b \longrightarrow ext{gauge field}$$

 \blacktriangleright a shift in the compactification radius R yields

$$\frac{\delta R}{R} \oint X_b \partial_n X_b$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Outline

Introduction

BSFT approach BSFT in a nutshell Factorization

BSFT on WZW Factorization for boundary WZW BSFT action

Curved background, an example SU(2) Tachyon condensation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Remarks on WZW, closed string only

model for non-trivial (flat) closed string background

►
$$S_{WZW}(g) = \kappa L(g) + \kappa \Gamma(g)$$

 $L = \operatorname{Tr} \int g^{-1} \partial g g^{-1} \overline{\partial} g$
 $\Gamma = \operatorname{Tr} \int w_3$
 $w_3 = (dgg^{-1})^{\wedge 3}$

▶ for w₃ extension of g to interior of closed worldsheet necessary

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

no ambiguities in partition function

Remarks on boundary WZW

- for simplicity assume $H^3 = 0$
- w_3 can be pulled to the boundary, $w_3 = dw_2$
- ambiguity: w_2 defined up to closed form $d\beta$
- thus for the action one needs to specify a one-form β :

$$\Gamma^{eta} = \Gamma + \oint eta$$

- β lives on the boundary only
- some assumptions needed to fix β (below)

Factorization for boundary WZW

Splitting of the fields:

- g₀ satisfies D0-boundary conditions, g₀| = const k satisfies classical EOM, ∂kk⁻¹ = 0 = k⁻¹∂k
- S(g₀k) determined by Polyakov-Wiegmann formula, but needs extension for boundary WZW

Boundary Polyakov-Wiegmann

- ► only Γ may be problematic. for closed string: w₃(g₁g₂) = w₃(g₁) + w₃(g₂) + G(g₁,g₂)
- ► for open string one can show, that $w_3(g_1g_2) - w_3(g_1) - w_3(g_2) - G(g_1, g_2)$ is a 2-cocycle on *LG*
- and its integral over the worldsheet depends only on its values on the boundary and is independent of the choice of extension
- for $g = g_0 k$ this integral vanishes

► finally,

$$S_{WZW}(g) = S_{WZW}(g_0) + L(k) + \Gamma^{\beta}(k) + W(g_0, k)$$

with $W(g_0,k) = \operatorname{Tr} \int g_0^{-1} \bar{\partial} g_0 \partial k k^{-1}$

Factorization

$$S_{WZW}(g) = S_{WZW}(g_0) + L(k) + \Gamma^{\beta}(k) + W(g_0, k)$$

- a priori no decoupling of g_0 and k, due to presence of W
- but still, the partition function factorizes (main technical result):

$$\left\langle \left(\operatorname{Tr} \int g_0^{-1} \bar{\partial} g_0 \partial k k^{-1} \right)^n \right\rangle_{g_0} = 0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- thus W does not contribute
- $Z[k] = Z_0 e^{-\tilde{S}[k]}$ is still true

Outline

Introduction

BSFT approach BSFT in a nutshell Factorization

BSFT on WZW

Factorization for boundary WZW BSFT action

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Curved background, an example SU(2) Tachyon condensation

The boundary action

$$S(k) = L(k) + \Gamma^{\beta}(k)$$

explicit expression wanted

▶ using the Ansatz k(z, z̄) = h(z)h(z̄) and boundary Polyakov-Wiegmann, we get

$$\Gamma^{\beta}(k) = -L(k) + \int \alpha(h, \bar{h})$$

where α is a 2-cocycle

therefore factorization gives

$$Z[k] = Z_0 e^{-\int \alpha(h,\bar{h}) - \oint \beta}$$

 we cannot calculate the boundary action, but we can make a guess based on some basic properties

The boundary action

the chosen action must ...

- ... lead to the same algebraic boundary conditions as the 'full' WZW model
- ... obey the cocycle conditions
- ... give the correct large-radius limit
- our Ansatz:

$$\tilde{S} = L(k) = \int k^{-1} \partial k k^{-1} \bar{\partial} k = \int h^{-1} \partial h \bar{\partial} \bar{h} \bar{h}^{-1}$$

(can be written as a surface integral)

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

The boundary action

the chosen action must ...

- ... lead to the same algebraic boundary conditions as the 'full' WZW model
- ... obey the cocycle conditions
- ... give the correct large-radius limit
- our Ansatz:

$$\tilde{S} = L(k) = \int k^{-1} \partial k k^{-1} \bar{\partial} k = \int h^{-1} \partial h \bar{\partial} \bar{h} \bar{h}^{-1}$$

(can be written as a surface integral)

... SL(2), SU(2), Nappi-Witten ...

Outline

Introduction

BSFT approach BSFT in a nutshell Factorization

BSFT on WZW

Factorization for boundary WZW BSFT action

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Curved background, an example SU(2) Tachyon condensation Curved background, an example

WZW on SU(2)

- symmetries
- ► maximally symmetric D-branes known ↔ conjugacy classes, discrete
- parametrization:

$$k = e^{i\lambda X^{\mu}T_{\mu}}$$

 $\begin{array}{l} \lambda - \kappa^{-\frac{1}{2}}, \text{ expansion parameter} \\ \mathcal{T} - \text{generators of SU(2)} \\ \text{large radius limit: } \lambda \to 0 \quad \Leftrightarrow \quad \kappa \to \infty \end{array}$

in the same way:

$$h(z)=e^{i\lambda f^{\mu}_{+}T_{\mu}} \qquad ar{h}(ar{z})=e^{i\lambda f^{\mu}_{-}T_{\mu}}$$

Coordinates

Relation between flat and curved coordinates

$$X^{\mu} = f^{\mu}_{+} + f^{\mu}_{-} - \lambda \varepsilon_{\mu\nu\kappa} f^{\nu}_{+} f^{\kappa}_{-} + \mathscr{O}(\lambda^{2})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- continuation: $f_+ \to f(z)$ $f_- \to \overline{f}(\overline{z})$
- technical issue: enforces $SU(2)^{\mathbb{C}}$

Non-local deformations

definition of a path-integral:

$$\int \left[\delta k k^{-1}\right] e^{-\frac{1}{(i\lambda)^2}\int \partial k k^{-1}\bar{\partial}k k^{-1}}$$

• express everything in f, \overline{f}

action:

$$S = s \sum_{m=1}^{\infty} m f_m \bar{f}_m - \frac{\lambda}{2} \left\{ V_{\alpha} - \bar{V}_{\alpha} + \lambda V_{\beta} + \lambda V_{\gamma} + \lambda \bar{V}_{\gamma} \right\}$$

$$\begin{split} V_{\alpha} &= \sum (c-b) \delta_{a,c+b} \varepsilon_{\mu\nu\lambda} f_c^{\mu} f_b^{\nu} \bar{f}_a^{\lambda} \\ V_{\beta} &= \sum \frac{(c-b)(a-d)}{a+d} \delta_{c+b,a+d} f_c^{\mu} f_b^{\nu} \bar{f}_{a\mu} \bar{f}_{d\nu} \\ V_{\gamma} &= \frac{2}{3} \sum (a-b-d) \delta_{c,a+b+d} f_c^{\mu} \bar{f}_{a\mu} \bar{f}_b^{\nu} \bar{f}_{d\nu} \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Non-local deformations

contribution from measure:

$$S_{\text{measure}} = 4\lambda^2 \sum f_n \bar{f}_n$$

include quadratic tachyon

$$S_{\text{tachyon}} = \oint T(X) = a + u \sum f_n \overline{f}_n$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Non-local deformations

contribution from measure:

$$S_{\text{measure}} = 4\lambda^2 \sum f_n \bar{f}_n$$

(tachyon forced into existence!)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

include quadratic tachyon

$$S_{\text{tachyon}} = \oint T(X) = a + u \sum f_n \overline{f}_n$$

RG flow

- $\lambda \longrightarrow$ non-local deformation (keep symmetry)
- $a, u \longrightarrow$ control tachyon condensation

β -functions

- λ increases
- tachyon condensation is modified
- obvious endpoint: $a = \infty$, $u = \infty$ (but there is more...)

Outline

Introduction

BSFT approach BSFT in a nutshell Factorization

BSFT on WZW

Factorization for boundary WZW BSFT action

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Curved background, an example SU(2) Tachyon condensation

Condensation of the 3-brane

- non-vanishing tachyon makes 3-brane unstable
- can we identify a process $D3 \rightarrow D2?$
- assume a tachyon interaction

$$\oint \rho \left(X^2 - c^2\right)^2 = \rho c^4 - 4\rho c^2 \sum f_n \bar{f}_n + \mathscr{O}(f^4)$$

- ▶ p, c² are the 'natural couplings', in which a condensation to spherical brane is described
- re-write the β -functions:

$$egin{aligned} eta_{c^2} &= 4 - 8\lambda^2 \ eta_{
ho} &= -rac{
ho}{c^2}\left(c^2 - 16c^2\lambda^2 + 4
ight) \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Condensation of the 3-brane

- for a 2-brane solution we would expect finite c² and running ρ (λ fixed)
- such a solution is

$$c^{2} = \frac{1}{2}\lambda^{-2}$$
$$\beta_{c^{2}} = 0$$
$$\beta_{\rho} = -\rho(1 - 8\lambda^{2})$$

- this tells us: ρ will increase
- geometry: determined by λ (curvature)
- $\lambda \rightarrow 0$ gives a flat brane (flat space limit)

$\lambda - c^2$ -flow

• running of c^2 is strongly modified by the presence of λ

Verification of the solution

- Ansatz for D2-solution was a 'guess'
- independent verification:
 - insert constraint $X^2 = c^2$ into action
 - verify conformality
- \blacktriangleright complicated \rightarrow look for stability check

$$\begin{split} A_{1} &= \frac{1}{2} \sum_{a=1}^{n} \sum_{d=2}^{d-1} (d-a) \epsilon_{\alpha\beta} f_{a}^{\alpha} \bar{f}_{a+d}^{\beta} f_{e\gamma} f_{d-e}^{\gamma} \\ B_{1} &= \frac{1}{4} \sum_{m=2}^{m-1} \sum_{a=1}^{m-1} m f_{a\alpha} f_{m-a}^{\alpha} \bar{f}_{b\beta} \bar{f}_{m-b}^{\beta} \\ \bar{A}_{1} &= A_{1}^{*} \\ A_{2} &= \sum_{a=1}^{n} \sum_{c=1}^{m-1} \sum_{d=2}^{(d-a)} (d-a) \epsilon_{\alpha\beta} f_{a}^{\alpha} \bar{f}_{a+d}^{\beta} f_{c+d\gamma} \bar{f}_{c}^{\gamma} \\ \bar{A}_{2} &= A_{2}^{*} \\ \bar{A}_{2} &= A_{2}^{*} \\ A_{3} &= \frac{1}{4} \sum_{a=1}^{n} \sum_{b=1}^{a+b-1} (a-b) \epsilon_{\alpha\beta} f_{a}^{\alpha} f_{b}^{\beta} \bar{f}_{g\gamma} \bar{f}_{a+b-g}^{\gamma} \\ A_{3} &= \frac{1}{4} \sum_{a=1}^{m-1} \sum_{b=1}^{m-1} \sum_{a=1}^{m-1} m f_{a\alpha} f_{m-a}^{\alpha} f_{b\beta} \bar{f}_{d\beta}^{\beta} \bar{f}_{d\beta} \delta_{a+b,c+d} \\ \bar{A}_{3} &= A_{3}^{*} \\ A_{4} &= \frac{1}{2} \sum_{a=1}^{m-1} \sum_{b=1}^{m-1} (a-b) \epsilon_{\alpha\beta} f_{a}^{\alpha} f_{b}^{\beta} \bar{f}_{c\gamma} \bar{f}_{a+b-c}^{\gamma} \\ \bar{A}_{4} &= A_{4}^{*} \\ \end{split}$$

Stability of the 2-brane

- consider case with vanishing tachyon
- will the tachyon be excited at higher loops?
- the tachyon counter-term:

$$\Sigma^{(2)}(p=0) = [\Lambda \ln \Lambda + (\gamma - 1)\Lambda] \left\{ \frac{4\lambda^2}{c^2 s^3} - \frac{8}{3} \frac{\lambda^2}{s^2 c^2} - \frac{38}{sc^4} \right\}$$
$$+ \ln \Lambda \{\operatorname{terms} \propto u\} + \mathcal{O}(\lambda^4)$$

all divergences vanish under a single condition:

$$c^2 = \alpha(s)\lambda^{-2}$$

no 'fine-tuning' necessary

Interpretation

On the three-brane:

- λ excites infinitely many massive couplings
- affects stability of D-branes
- tachyon condensation process initiated and modified
- qualitatively new RG flows
- λ is running, c² can be kept finite, ρ is running & condensating
- breakdown of predictability \rightarrow 2-brane Ansatz

On the two-brane:

- a priori tachyonic instability
- ► instability removed by essentially same condition on c² as on three-brane
- tachyon can be set to zero without fine-tuning
- indicates that 2-brane is conformal
- ► λ really seems to interpolate between flat and curved space → supports interpretation of λ as closed string perturbation

Perspectives

- ▶ higher order β -functions, more examples, better methods
- better control over flow
- other WZW-branes, potential
- backgrounds other than WZW
- supersymmetry
- systematic investigation of open-closed modulispaces, better statements on background independence
- boundary state formalism, possibly access to closed string vacuum

connections to T-folds? Defect CFTs?

THANK YOU