BSFT and Closed Strings

Marco Baumgartl

Arnold-Sommerfeld Center for Theoretical Physics, LMU Munich and Excellence Cluster Universe

SFT09

Stelkov Mathematical Institute
Moscow, April 2009

MB, I. Sachs, S. Shatashvili, 2004
MB, I. Sachs, 2006
MB, I. Sachs, 2008
MB, 2008

Open strings vs. closed strings

- S-matrix: closed string poles in open string scattering amplitudes unitarity in OSFT?
- 2d string theory (Liouville): explicit duality
- tachyon condensation: open string completeness conjecture
- topological string theory: e.g. Hochschild complex

Open strings vs. closed strings

- BCFT: open and closed string moduli
- open moduli space changes significantly under closed string deformations
- dramatic effects on D-branes
[MB, Brunner, Gaberdiel, 2007]
[MB, Wood, 2008]
- how do closed string deformations appear in OSFT?
- background (in)dependence?

Outline

Introduction

BSFT approach
BSFT in a nutshell
Factorization

BSFT on WZW
Factorization for boundary WZW BSFT action

Curved background, an example SU(2)
Tachyon condensation

Outline

Introduction

BSFT approach
BSFT in a nutshell
Factorization

```
BSFT on WZW
Factorization for boundary WZW
BSFT action
```

Curved background, an example
SU(2)
Tachyon condensation

BSFT in a nutshell

- $S=\int_{\Sigma} L\left(G_{\mu v} ; B_{\mu v} ; X^{\mu}\right)+\int_{\partial \Sigma} b\left(t^{\prime} ; X^{\mu}\right)$
- L defines a CFT as 'background' with massless fields as moduli
- b is a boundary term with a 'complete' set of couplings t^{\prime}
- and vertex operators $V_{I}=\left.\frac{\partial b\left(t^{J}\right)}{\partial t^{\prime}}\right|_{t^{J}=0}$
- b breaks conformal invariance (on the boundary only)
- classical solutions of SFT: ghost + matter CFT
- idea: consider the space of all boundary deformations \mathscr{O} (ghost number 1)
$S=S_{\text {matter }}+S_{\text {ghosts }}+\oint b_{-1} \mathscr{O}$

$$
b_{-1}=\oint_{C \rightarrow \partial D} b, \quad Q_{B}=\oint_{C \rightarrow \partial D} J_{B}
$$

BSFT in a nutshell

- construct action via BV: use master equation (choose anti-bracket) + classical solutions
- SFT action (form on coupling space):

$$
d \mathscr{S}=\left\langle\oint d \mathscr{O}\left\{Q_{B}, \oint \mathscr{O}\right\}\right\rangle
$$

- matter/ghost decoupling: $\mathscr{O}=c \mathscr{V}=c t^{I} \mathscr{V}_{1}$

$$
\mathscr{S}=\left(1-\beta^{\prime}(t) \frac{\partial}{\partial t^{\prime}}\right) \mathscr{Z}(t)
$$

- generating functional $\mathscr{Z}\left(t^{\prime}\right)=\int D X e^{-S[X]}$

Space of boundary couplings

- consider flat background $\mathbb{R}^{1,25}$ with string field X derivative expansion: $\mathscr{V}(X)=T(X)+A_{\mu}(X) \dot{X}^{\mu}+$ massive modes
- \mathscr{S} is a functional of infinitely many modes (renormalizability!)
- these might be expansions of non-local interactions [Li, Witten]
$\oint \oint X(\sigma) u\left(\sigma, \sigma^{\prime}\right) X\left(\sigma^{\prime}\right)$ can be expanded in
derivatives $\sum_{n} \oint X t_{n} \partial_{\sigma}^{(n)} X$ with $u^{n}=\sum_{m}(i n)^{m} t_{m}$
- such 'collectively excited' couplings appear naturally and get interpretation from closed string sector

Background dependence?

$$
\mathscr{M}=\left(G_{\mu v}, B_{\mu v}\right) \quad \longleftrightarrow \quad \mathscr{M}^{\prime}=\left(G_{\mu v}^{\prime}, B_{\mu v}^{\prime}\right)
$$

- OS spectrum may change
- OS β-equations may change
- OS conformal point shifted $t_{*} \rightarrow t_{*}^{\prime}$
- BSFT action $\mathscr{S}=\left(1-\beta^{\prime} \partial_{l}\right) \mathscr{Z}$ defined pointwise

NB: reminiscent of the situation in open-closed moduli spaces,
Picard-Fuchs equation systems

Background independence!

$$
\begin{array}{lll}
\mathscr{M}=\left(G_{\mu v}, B_{\mu \nu}\right) & \longleftrightarrow & \mathscr{M}^{\prime}=\left(G_{\mu v}^{\prime}, B_{\mu \nu}^{\prime}\right) \\
\mathscr{S}_{\mathscr{M}}\left(t^{\prime}\right) & \longleftrightarrow & \mathscr{S}_{M^{\prime}}\left(t^{\prime}+\Delta t^{\prime} ; \tau^{\prime}\right)
\end{array}
$$

- new open string background $t_{*}^{\prime}=t_{*}+\Delta t$
- the original couplings t^{\prime} still describe the open strings
- surprise: no need to integrate out closed strings, due to a factorization property; no higher order α^{\prime} terms in the boundary interaction term b

$$
\mathscr{Z}_{\mathscr{M}}=\mathscr{Z}_{0} \mathscr{Z}_{\mathscr{M}^{\prime}}
$$

- but: generically non-local couplings τ^{\prime} appear

Outline

Introduction

BSFT approach
BSFT in a nutshell

Factorization

```
BSFT on WZW
    Factorization for boundary WZW
    BSFT action
```

Curved background, an example
SU(2)
Tachyon condensation

Re-formulation of BSFT

splitting of fields

- how to parametrize space of boundary-deformed 2d CFTs?
- \{space of boundary deformations $\} \longleftrightarrow$ space of functions f on $\left.S^{1}\right\}$
(also parametrizes all boundary conditions, after integration)
- unique decomposition: $X=X_{0}+X_{b}$
where $X_{0} \mid=x_{0}$ (D0) and $\Delta X_{b}=0$ (harmonic)
- thus $X_{b}=X_{b}[f]$ with $X_{b}(\tau, \sigma) \mid=f(\sigma)$
- $S(X)=\int d^{2} z \partial X \bar{\partial} X=S\left(X_{0}\right)+S\left(X_{b}\right)+W\left(X_{0}, X_{b}\right)$
- with $S\left(X_{b}\right)=\oint d \sigma d \sigma^{\prime} f(\sigma) H\left(\sigma-\sigma^{\prime}\right) f\left(\sigma^{\prime}\right)$
- and $H(\sigma)=\sum_{n} \oint d \sigma|n| e^{i n \sigma}$

Re-formulation of BSFT

more on the boundary action

- boundary data $f(\sigma)$ can be decomposed by holomorphic/anti-holomorphic extendibility on the disk
- $f(\sigma)=f_{+}(\sigma)+f_{-}(\sigma)$

$$
\begin{aligned}
& \longrightarrow f_{+}(z)+f_{-}(\bar{z})=f(z, \bar{z})=X_{b}(z, \bar{z}) \\
& H f=\partial_{\sigma} f_{+}-\partial_{\sigma} f_{-}=\partial_{n} X_{b}
\end{aligned}
$$

- action of H :
- boundary action: $\oint f_{+} d f_{-}=\oint X_{b} \partial_{n} X_{b}$ observation: 2-cocycle

Re-formulation of BSFT

partition function

- replace $\mathscr{Z}[t]$ by $\mathscr{Z}[f]$
$\mathscr{Z}[f]$ - partition function with fixed boundary conditions f :
$\mathscr{Z}[t]=\int D f e^{-l[t]} \mathscr{Z}[f]$
- path-integral factorizes:

$$
\mathscr{Z}[f]=\int_{\text {D0 b.c. }} D X_{0} e^{-S\left[X_{0}\right]} \times e^{-\tilde{S}[f]}=Z_{0} e^{-\tilde{S}[f]}
$$

- no 'interaction' between 'bulk part' and 'boundary part' of X
- X_{0} has not been 'integrated out'! I.e. arbitrary boundary interactions allowed

Re-formulation of BSFT

partition function

- factorization allows to re-define BSFT-action (requires choice of measure for f-path-integral)

$$
\mathscr{S} \longrightarrow \mathscr{S}^{\prime}=\mathscr{S} / \mathscr{Z}_{0}
$$

- everything formulated in terms of 'boundary fields' f
- $\mathscr{S}^{\prime}=\mathscr{S} / \mathscr{Z}_{0}$ is well-defined
- change in closed string background can be studied in BSFT
- how generic is this factorization property?

Simple examples

Starting from the free boson $\mathscr{M}=\left(G_{\mu \nu}=\eta_{\mu \nu}, B_{\mu \nu}=0, R\right)$

- a shift in the Kalb-Ramond field yields

$$
\delta B_{\mu v} \oint X_{b}^{\mu} d X_{b}^{v} \quad \longrightarrow \text { gauge field }
$$

- a shift in the compactification radius R yields

$$
\frac{\delta R}{R} \oint x_{b} \partial_{n} x_{b}
$$

Outline

Introduction

BSFT approach
 BSFT in a nutshell
 Factorization

BSFT on WZW
Factorization for boundary WZW
BSFT action

Curved background, an example
SU(2)
Tachyon condensation

Remarks on WZW, closed string only

- model for non-trivial (flat) closed string background
- $S_{W Z W}(g)=\kappa L(g)+\kappa \Gamma(g)$

$$
\begin{aligned}
& L=\operatorname{Tr} \int g^{-1} \partial g g^{-1} \bar{\partial} g \\
& \Gamma=\operatorname{Tr} \int w_{3} \\
& w_{3}=\left(d g g^{-1}\right)^{\wedge 3}
\end{aligned}
$$

- for w_{3} extension of g to interior of closed worldsheet necessary
- no ambiguities in partition function

Remarks on boundary WZW

- for simplicity assume $H^{3}=0$
- w_{3} can be pulled to the boundary, $w_{3}=d w_{2}$
- ambiguity: w_{2} defined up to closed form $d \beta$
- thus for the action one needs to specify a one-form β :

$$
\Gamma^{\beta}=\Gamma+\oint \beta
$$

- β lives on the boundary only
- some assumptions needed to fix β (below)

Factorization for boundary WZW

- Splitting of the fields:

$$
\begin{array}{ll}
g=g_{0} k & \text { in analogy to } X=X_{0}+X_{b} \\
k=h(z) \bar{h}(\bar{z}) & \text { in analogy to } X_{b}=f_{+}(z)+f_{-}(\bar{z})
\end{array}
$$

- g_{0} satisfies D0-boundary conditions, $g_{0} \mid=$ const k satisfies classical EOM, $\partial k k^{-1}=0=k^{-1} \bar{\partial} k$
- $S\left(g_{0} k\right)$ determined by Polyakov-Wiegmann formula, but needs extension for boundary WZW

Boundary Polyakov-Wiegmann

- only Γ may be problematic. for closed string: $w_{3}\left(g_{1} g_{2}\right)=w_{3}\left(g_{1}\right)+w_{3}\left(g_{2}\right)+G\left(g_{1}, g_{2}\right)$
- for open string one can show, that $w_{3}\left(g_{1} g_{2}\right)-w_{3}\left(g_{1}\right)-w_{3}\left(g_{2}\right)-G\left(g_{1}, g_{2}\right)$ is a 2 -cocycle on $L G$
- and its integral over the worldsheet depends only on its values on the boundary and is independent of the choice of extension
- for $g=g_{0} k$ this integral vanishes
- finally,

$$
S_{W Z W}(g)=S_{W Z W}\left(g_{0}\right)+L(k)+\Gamma^{\beta}(k)+W\left(g_{0}, k\right)
$$

with $W\left(g_{0}, k\right)=\operatorname{Tr} \int g_{0}^{-1} \bar{\partial} g_{0} \partial k k^{-1}$

Factorization

$$
S_{W z W}(g)=S_{W z W}\left(g_{0}\right)+L(k)+\Gamma^{\beta}(k)+W\left(g_{0}, k\right)
$$

- a priori no decoupling of g_{0} and k, due to presence of W
- but still, the partition function factorizes (main technical result):

$$
\left\langle\left(\operatorname{Tr} \int g_{0}^{-1} \bar{\partial} g_{0} \partial k k^{-1}\right)^{n}\right\rangle_{g_{0}}=0
$$

- thus W does not contribute
- $Z[k]=Z_{0} e^{-\tilde{S}[k]}$ is still true

Outline

```
Introduction
BSFT approach
    BSFT in a nutshell
    Factorization
```

BSFT on WZW
Factorization for boundary WZW

BSFT action

Curved background, an example
SU(2)
Tachyon condensation

The boundary action

$$
S(k)=L(k)+\Gamma^{\beta}(k)
$$

- explicit expression wanted
- using the Ansatz $k(z, \bar{z})=h(z) \bar{h}(\bar{z})$ and boundary Polyakov-Wiegmann, we get

$$
\Gamma^{\beta}(k)=-L(k)+\int \alpha(h, \bar{h})
$$

where α is a 2-cocycle

- therefore factorization gives

$$
Z[k]=Z_{0} e^{-\int \alpha(h, \bar{h})-\oint \beta}
$$

- we cannot calculate the boundary action, but we can make a guess based on some basic properties

The boundary action

the chosen action must ...

- ... lead to the same algebraic boundary conditions as the 'full' WZW model
- ... obey the cocycle conditions
- ... give the correct large-radius limit
- our Ansatz:

$$
\tilde{S}=L(k)=\int k^{-1} \partial k k^{-1} \bar{\partial} k=\int h^{-1} \partial h \bar{\partial} \bar{h} \bar{h}^{-1}
$$

(can be written as a surface integral)

The boundary action

the chosen action must ...

- ... lead to the same algebraic boundary conditions as the 'full' WZW model
- ... obey the cocycle conditions
- ... give the correct large-radius limit
- our Ansatz:

$$
\tilde{S}=L(k)=\int k^{-1} \partial k k^{-1} \bar{\partial} k=\int h^{-1} \partial h \bar{\partial} \bar{h} \bar{h}^{-1}
$$

(can be written as a surface integral)
... SL(2), SU(2), Nappi-Witten ...

Outline

Introduction

BSFT approach

BSFT in a nutshell

Factorization

BSFT on WZW
Factorization for boundary WZW BSFT action

Curved background, an example SU(2)
Tachyon condensation

Curved background, an example

WZW on SU(2)

- symmetries
- maximally symmetric D-branes known \leftrightarrow conjugacy classes, discrete
- parametrization:

$$
k=e^{i \lambda X^{\mu} T_{\mu}}
$$

$$
\begin{aligned}
& \lambda-\kappa^{-\frac{1}{2}} \text {, expansion parameter } \\
& T-\text { generators of } \operatorname{SU}(2) \\
& \text { large radius limit: } \lambda \rightarrow 0 \quad \Leftrightarrow \quad \kappa \rightarrow \infty
\end{aligned}
$$

- in the same way:

$$
h(z)=e^{i \lambda f_{+}^{\mu} T_{\mu}} \quad \bar{h}(\bar{z})=e^{i \lambda f_{-}^{\mu} T_{\mu}}
$$

Coordinates

Relation between flat and curved coordinates

$$
X^{\mu}=f_{+}^{\mu}+f_{-}^{\mu}-\lambda \varepsilon_{\mu \nu \kappa} f_{+}^{v} f_{-}^{\kappa}+\mathscr{O}\left(\lambda^{2}\right)
$$

- continuation: $f_{+} \rightarrow f(z) \quad f_{-} \rightarrow \bar{f}(\bar{z})$
- technical issue: enforces $S U(2)^{\mathbb{C}}$

Non-local deformations

- definition of a path-integral:

$$
\int\left[\delta k k^{-1}\right] e^{-\frac{1}{(i \lambda)^{2}} \int \partial k k^{-1} \bar{\partial} k k^{-1}}
$$

- express everything in f, \bar{f}
- action:

$$
\begin{gathered}
S=s \sum_{m=1}^{\infty} m f_{m} \bar{f}_{m}-\frac{\lambda}{2}\left\{V_{\alpha}-\bar{V}_{\alpha}+\lambda V_{\beta}+\lambda V_{\gamma}+\lambda \bar{V}_{\gamma}\right\} \\
V_{\alpha}=\sum(c-b) \delta_{a, c+b} \varepsilon_{\mu \nu \lambda} f_{c}^{\mu} f_{b}^{v} \bar{f}_{a}^{\lambda} \\
V_{\beta}=\sum \frac{(c-b)(a-d)}{a+d} \delta_{c+b, a+d} f_{c}^{\mu} f_{b}^{\nu} \bar{f}_{a \mu} \bar{f}_{d v} \\
V_{\gamma}=\frac{2}{3} \sum(a-b-d) \delta_{c, a+b+d} f_{c}^{\mu} \bar{f}_{a \mu} \bar{f}_{b}^{v} \bar{f}_{d v}
\end{gathered}
$$

Non-local deformations

- contribution from measure:

$$
S_{\text {measure }}=4 \lambda^{2} \sum f_{n} \bar{f}_{n}
$$

- include quadratic tachyon

$$
S_{\text {tachyon }}=\oint T(X)=a+u \sum f_{n} \bar{f}_{n}
$$

Non-local deformations

- contribution from measure:

$$
S_{\text {measure }}=4 \lambda^{2} \sum f_{n} \bar{f}_{n}
$$

(tachyon forced into existence!)

- include quadratic tachyon

$$
S_{\text {tachyon }}=\oint T(X)=a+u \sum f_{n} \bar{f}_{n}
$$

$\lambda \quad \rightarrow$ non-local deformation (keep symmetry)
a, u \rightarrow control tachyon condensation
β-functions

$$
\begin{gathered}
\beta_{a}=-a-u \\
\beta_{u}=-u\left(1-8 \lambda^{2}\right) \\
\beta_{\lambda}=-\frac{47}{6} \lambda^{3}
\end{gathered}
$$

- λ increases
- tachyon condensation is modified
- obvious endpoint: $a=\infty, u=\infty$ (but there is more...)

Outline

Introduction

BSFT approach
BSFT in a nutshell

Factorization

BSFT on WZW
Factorization for boundary WZW BSFT action

Curved background, an example SU(2)
Tachyon condensation

Condensation of the 3-brane

- non-vanishing tachyon makes 3-brane unstable
- can we identify a process D3 \rightarrow D2?
- assume a tachyon interaction

$$
\oint \rho\left(X^{2}-c^{2}\right)^{2}=\rho c^{4}-4 \rho c^{2} \sum f_{n} \bar{f}_{n}+\mathscr{O}\left(f^{4}\right)
$$

- ρ, c^{2} are the 'natural couplings', in which a condensation to spherical brane is described
- re-write the β-functions:

$$
\begin{aligned}
\beta_{c^{2}} & =4-8 \lambda^{2} \\
\beta_{\rho} & =-\frac{\rho}{c^{2}}\left(c^{2}-16 c^{2} \lambda^{2}+4\right)
\end{aligned}
$$

Condensation of the 3-brane

- for a 2-brane solution we would expect finite c^{2} and running ρ (λ fixed)
- such a solution is

$$
\begin{aligned}
& c^{2}=\frac{1}{2} \lambda^{-2} \\
& \beta_{c^{2}}=0 \\
& \beta_{\rho}=-\rho\left(1-8 \lambda^{2}\right)
\end{aligned}
$$

- this tells us: ρ will increase
- geometry: determined by λ (curvature)
- $\lambda \rightarrow 0$ gives a flat brane (flat space limit)

$\lambda-c^{2}$-flow

- running of c^{2} is strongly modified by the presence of λ

Verification of the solution

- Ansatz for D2-solution was a 'guess'
- independent verification:
- insert constraint $X^{2}=c^{2}$ into action
- verify conformality
- complicated \rightarrow look for stability check

$$
\begin{array}{ll}
A_{1}=\frac{1}{2} \sum_{a=1} \sum_{d=2} \sum_{c=1}^{d-1}(d-a) \epsilon_{\alpha \beta} f_{a}^{\alpha} \bar{f}_{a+d}^{\beta} f_{e_{\gamma}} f_{d-e}^{\gamma} & B_{1}=\frac{1}{4} \sum_{m=2} \sum_{a=1}^{m-1} \sum_{b=1}^{m-1} m f_{a \alpha} f_{m-a}^{\alpha} \bar{f}_{b} \bar{f}_{m-b}^{\beta} \\
\bar{A}_{1}=A_{1}^{*} & B_{2}=\sum_{m=2}^{m-1} \sum_{a=1}^{m-1} \sum_{b=1}^{m-1} m \bar{f}_{a \alpha} f_{m-a}^{\alpha} f_{b \beta} \bar{f}_{m-b}^{\beta} \\
A_{2}=\sum_{a=1} \sum_{c=1} \sum_{d=2}(d-a) \epsilon_{\alpha \beta} f_{a}^{\alpha} \bar{f}_{a+d}^{\beta} f_{c+d \gamma} \bar{f}_{c}^{\gamma} & B_{3}=\frac{1}{2} \sum_{m=2}^{m-1} \sum_{a=1}^{m-1} \sum_{b=1}^{m-1} m f_{a \alpha} f_{m-a}^{\alpha} f_{b b} \bar{f}_{m-b}^{\beta} \\
\bar{A}_{2}=A_{2}^{*} & C_{1}=-\sum_{a, b, c, d=1} \frac{(a-b)(c-d)}{c+d} f_{a}^{\alpha} \bar{f}_{c \alpha} f_{b}^{\beta} \bar{f}_{d \beta} \delta_{a+b, c+d} \\
A_{3}=\frac{1}{4} \sum_{a=1} \sum_{b=1}^{a+b-1} \sum_{g=1}(a-b) \epsilon_{\alpha \beta} f_{a}^{\alpha} f_{b}^{\beta} \bar{f}_{g \gamma} \bar{f}_{a+b-g}^{\gamma} & C_{2}=\frac{1}{3} \sum_{a, b,, d=1}(c-a-b) \bar{f}_{a}^{\alpha} \bar{f}_{b \alpha} \bar{f}_{c \beta} f_{a+b+c}^{\beta} \\
\bar{A}_{3}=A_{3}^{*} & \bar{C}_{2}=C_{2}^{*} . \\
A_{4}=\frac{1}{2} \sum_{a=1} \sum_{b=1} \sum_{c=1}(a-b) \epsilon_{\alpha \beta} f_{a}^{\alpha} f_{b}^{\beta} f_{c \gamma} \bar{f}_{a+b+c}^{\gamma} & \\
\bar{A}_{4}=A_{4}^{*} &
\end{array}
$$

Stability of the 2-brane

- consider case with vanishing tachyon
- will the tachyon be excited at higher loops?
- the tachyon counter-term:

$$
\begin{aligned}
\Sigma^{(2)}(p=0) & =[\Lambda \ln \Lambda+(\gamma-1) \Lambda]\left\{\frac{4 \lambda^{2}}{c^{2} s^{3}}-\frac{8}{3} \frac{\lambda^{2}}{s^{2} c^{2}}-\frac{38}{s c^{4}}\right\} \\
& +\ln \Lambda\{\text { terms } \propto u\}+\mathscr{O}\left(\lambda^{4}\right)
\end{aligned}
$$

- all divergences vanish under a single condition:

$$
c^{2}=\alpha(s) \lambda^{-2}
$$

- no 'fine-tuning' necessary

Interpretation

On the three-brane:

- λ excites infinitely many massive couplings
- affects stability of D-branes
- tachyon condensation process initiated and modified
- qualitatively new RG flows
- λ is running, c^{2} can be kept finite, ρ is running \& condensating
- breakdown of predictability \rightarrow 2-brane Ansatz

On the two-brane:

- a priori tachyonic instability
- instability removed by essentially same condition on c^{2} as on three-brane
- tachyon can be set to zero without fine-tuning
- indicates that 2-brane is conformal
- λ really seems to interpolate between flat and curved space
\rightarrow supports interpretation of λ as closed string perturbation

Perspectives

- higher order β-functions, more examples, better methods
- better control over flow
- other WZW-branes, potential
- backgrounds other than WZW
- supersymmetry
- systematic investigation of open-closed modulispaces, better statements on background independence
- boundary state formalism, possibly access to closed string vacuum
- connections to T-folds? Defect CFTs?

Thank You

