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Open strings vs. closed strings

I S-matrix:
closed string poles in open string scattering amplitudes
unitarity in OSFT?

I 2d string theory (Liouville): explicit duality

I tachyon condensation: open string completeness conjecture

I topological string theory: e.g. Hochschild complex



Open strings vs. closed strings

I BCFT: open and closed string moduli

I open moduli space changes significantly under closed string
deformations

I dramatic effects on D-branes
[MB, Brunner, Gaberdiel, 2007]

[MB, Wood, 2008]

I how do closed string deformations appear in OSFT?

I background (in)dependence?
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BSFT in a nutshell

I S =
∫

Σ L(Gµν ;Bµν ;X µ ) +
∫

∂Σ b(t I ;X µ )

I L defines a CFT as ‘background’ with massless fields as moduli
I b is a boundary term with a ‘complete’ set of couplings t I

I and vertex operators VI = ∂ b(tJ )

∂ tI

∣∣∣
tJ =0

I b breaks conformal invariance (on the boundary only)

I classical solutions of SFT: ghost + matter CFT

I idea: consider the space of all boundary deformations O (ghost

number 1)

S = Smatter + Sghosts +
∮

b−1O
b−1 =

∮
C→∂D b, QB =

∮
C→∂D JB



BSFT in a nutshell

I construct action via BV:
use master equation (choose anti-bracket) + classical
solutions

I SFT action (form on coupling space):

dS = 〈
∮

dO

{
QB ,

∮
O

}
〉

[Witten]

I matter/ghost decoupling: O = cV = ct I VI

S =

(
1−β

I (t)
∂

∂ t I

)
Z (t)

[Shatashvili]

I generating functional Z (t I ) =
∫

DX e−S[X ]



Space of boundary couplings

I consider flat background R1,25 with string field X
derivative expansion:
V (X ) = T (X ) + Aµ (X )Ẋ µ + massive modes

I S is a functional of infinitely many modes (renormalizability!)

I these might be expansions of non-local interactions [Li, Witten]∮ ∮
X (σ)u(σ ,σ ′)X (σ ′) can be expanded in

derivatives ∑n

∮
Xtn∂

(n)
σ X with un = ∑m(in)mtm

I such ‘collectively excited’ couplings appear naturally and get
interpretation from closed string sector



Background dependence?

M = (Gµν ,Bµν ) ←→ M ′ = (G ′µν ,B ′µν )

I OS spectrum may change

I OS β -equations may change

I OS conformal point shifted t∗→ t ′∗
I BSFT action S = (1−β I ∂I )Z defined pointwise

NB: reminiscent of the situation in open-closed moduli spaces,

Picard-Fuchs equation systems



Background independence!

M = (Gµν ,Bµν ) ←→ M ′ = (G ′µν ,B ′µν )

SM (t I ) ←→ SM ′(t I + ∆t I ;τ
I )

I new open string background t ′∗ = t∗+ ∆t

I the original couplings t I still describe the open strings

I surprise: no need to integrate out closed strings, due to a
factorization property; no higher order α ′ terms in the
boundary interaction term b

ZM = Z0 ZM ′

I but: generically non-local couplings τ I appear
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Re-formulation of BSFT
splitting of fields

I how to parametrize space of boundary-deformed 2d CFTs?

I {space of boundary deformations} ←→ {space of functions f
on S1}

(also parametrizes all boundary conditions, after integration)

I unique decomposition: X = X0 + Xb

where X0|= x0 (D0) and ∆Xb = 0 (harmonic)

I thus Xb = Xb[f ] with Xb(τ,σ)|= f (σ)

I S(X ) =
∫

d2z ∂ X ∂̄ X = S(X0) + S(Xb) + W (X0,Xb)

I with S(Xb) =
∮

dσdσ ′ f (σ)H(σ −σ ′)f (σ ′)

I and H(σ) = ∑n

∮
dσ |n|e inσ



Re-formulation of BSFT
more on the boundary action

I boundary data f (σ) can be decomposed by
holomorphic/anti-holomorphic extendibility on the disk

I f (σ) = f+(σ) + f−(σ)
−→ f+(z) + f−(z̄) = f (z , z̄) = Xb(z , z̄)

I action of H: Hf = ∂σ f+−∂σ f− = ∂nXb

I boundary action:
∮

f+df− =
∮

Xb∂nXb

observation: 2-cocycle



Re-formulation of BSFT
partition function

I replace Z [t] by Z [f ]
Z [f ] – partition function with fixed boundary conditions f :
Z [t] =

∫
Df e−I [t]Z [f ]

I path-integral factorizes:

Z [f ] =
∫

D0 b.c.
DX0 e−S[X0]× e−S̃[f ] = Z0 e−S̃[f ]

I no ‘interaction’ between ‘bulk part’ and ‘boundary part’ of X

I X0 has not been ‘integrated out’ ! I.e. arbitrary boundary
interactions allowed



Re-formulation of BSFT
partition function

I factorization allows to re-define BSFT-action
(requires choice of measure for f -path-integral)

S −→S ′ = S /Z0

I everything formulated in terms of ‘boundary fields’ f

I S ′ = S /Z0 is well-defined

I change in closed string background can be studied in BSFT

I how generic is this factorization property?



Simple examples

Starting from the free boson M = (Gµν = ηµν ,Bµν = 0,R)

I a shift in the Kalb-Ramond field yields

δ Bµν

∮
X

µ

b dX ν

b −→ gauge field

I a shift in the compactification radius R yields

δ R

R

∮
Xb∂nXb
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Remarks on WZW, closed string only

I model for non-trivial (flat) closed string background

I SWZW (g) = κL(g) + κΓ(g)

L = Tr
∫

g−1∂ gg−1∂̄ g
Γ = Tr

∫
w3

w3 = (dgg−1)∧3

I for w3 extension of g to interior of closed worldsheet necessary

I no ambiguities in partition function



Remarks on boundary WZW

I for simplicity assume H3 = 0

I w3 can be pulled to the boundary, w3 = dw2

I ambiguity: w2 defined up to closed form dβ

I thus for the action one needs to specify a one-form β :

Γβ = Γ +
∮

β

I β lives on the boundary only

I some assumptions needed to fix β (below)



Factorization for boundary WZW

I Splitting of the fields:

g = g0 k in analogy to X = X0 + Xb

k = h(z)h̄(z̄) in analogy to Xb = f+(z) + f−(z̄)

I g0 satisfies D0-boundary conditions, g0|= const
k satisfies classical EOM, ∂ kk−1 = 0 = k−1∂̄ k

I S(g0k) determined by Polyakov-Wiegmann formula, but needs
extension for boundary WZW



Boundary Polyakov-Wiegmann

I only Γ may be problematic.
for closed string: w3(g1g2) = w3(g1) + w3(g2) + G (g1,g2)

I for open string one can show, that
w3(g1g2)−w3(g1)−w3(g2)−G (g1,g2) is a 2-cocycle on LG

I and its integral over the worldsheet depends only on its values
on the boundary and is independent of the choice of extension

I for g = g0 k this integral vanishes

I finally,

SWZW (g) = SWZW (g0) + L(k) + Γβ (k) + W (g0,k)

with W (g0,k) = Tr
∫

g−1
0 ∂̄ g0∂ kk−1



Factorization

SWZW (g) = SWZW (g0) + L(k) + Γβ (k) + W (g0,k)

I a priori no decoupling of g0 and k, due to presence of W

I but still, the partition function factorizes (main technical result):〈(
Tr
∫

g−1
0 ∂̄ g0∂ kk−1

)n〉
g0

= 0

I thus W does not contribute

I Z [k] = Z0e−S̃[k] is still true
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The boundary action

S(k) = L(k) + Γβ (k)

I explicit expression wanted

I using the Ansatz k(z , z̄) = h(z)h̄(z̄) and boundary
Polyakov-Wiegmann, we get

Γβ (k) =−L(k) +
∫

α(h, h̄)

where α is a 2-cocycle

I therefore factorization gives

Z [k] = Z0 e−
∫

α(h,h̄)−
∮

β

I we cannot calculate the boundary action, but we can make a
guess based on some basic properties



The boundary action

the chosen action must ...

I ... lead to the same algebraic boundary conditions
as the ‘full’ WZW model

I ... obey the cocycle conditions

I ... give the correct large-radius limit

I our Ansatz:

S̃ = L(k)=
∫

k−1
∂ kk−1

∂̄ k=
∫

h−1
∂ h∂̄ h̄h̄−1

(can be written as a surface integral)

... SL(2), SU(2), Nappi-Witten ...
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Curved background, an example

WZW on SU(2)

I symmetries

I maximally symmetric D-branes known ↔ conjugacy classes,
discrete

I parametrization:
k = e iλX µ Tµ

λ – κ
− 1

2 , expansion parameter
T – generators of SU(2)
large radius limit: λ → 0 ⇔ κ → ∞

I in the same way:

h(z) = e iλ f
µ

+ Tµ h̄(z̄) = e iλ f
µ

−Tµ



Coordinates

Relation between flat and curved coordinates

X µ = f
µ

+ + f
µ

− −λεµνκ f ν
+ f κ
− +O(λ

2)

I continuation: f+→ f (z) f−→ f̄ (z̄)

I technical issue: enforces SU(2)C



Non-local deformations

I definition of a path-integral:∫ [
δ kk−1

]
e
− 1

(iλ)2

∫
∂kk−1∂̄kk−1

I express everything in f , f̄

I action:

S = s
∞

∑
m=1

mfm f̄m−
λ

2

{
Vα − V̄α + λ Vβ + λ Vγ + λ V̄γ

}

Vα = ∑(c−b)δa,c+bεµνλ f
µ

c f ν
b f̄ λ

a

Vβ = ∑
(c−b)(a−d)

a + d
δc+b,a+d f

µ
c f ν

b f̄aµ f̄dν

Vγ =
2

3 ∑(a−b−d)δc,a+b+d f
µ

c f̄aµ f̄ ν
b f̄dν



Non-local deformations

I contribution from measure:

Smeasure = 4λ
2
∑ fn f̄n

(tachyon forced into existence!)

I include quadratic tachyon

Stachyon =
∮

T (X ) = a + u ∑ fn f̄n
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RG flow

λ → non-local deformation (keep symmetry)
a,u → control tachyon condensation

β -functions

βa =−a−u

βu =−u(1−8λ 2)

βλ =−47
6 λ 3

I λ increases

I tachyon condensation is modified

I obvious endpoint: a = ∞, u = ∞ (but there is more...)
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Condensation of the 3-brane

I non-vanishing tachyon makes 3-brane unstable

I can we identify a process D3 → D2?

I assume a tachyon interaction∮
ρ
(
X 2− c2

)2
= ρc4−4ρc2

∑ fn f̄n +O(f 4)

I ρ,c2 are the ‘natural couplings’, in which a condensation to
spherical brane is described

I re-write the β -functions:

βc2 = 4−8λ
2

βρ =− ρ

c2

(
c2−16c2

λ
2 + 4

)



Condensation of the 3-brane

I for a 2-brane solution we would expect finite c2 and running ρ

(λ fixed)

I such a solution is

c2 =
1

2
λ
−2

βc2 = 0

βρ =−ρ(1−8λ
2)

I this tells us: ρ will increase

I geometry: determined by λ (curvature)

I λ → 0 gives a flat brane (flat space limit)



λ –c2-flow

I running of c2 is strongly modified by the presence of λ



Verification of the solution

I Ansatz for D2-solution was a ‘guess’
I independent verification:

I insert constraint X 2 = c2 into action
I verify conformality

I complicated → look for stability check



Stability of the 2-brane

I consider case with vanishing tachyon

I will the tachyon be excited at higher loops?

I the tachyon counter-term:

Σ(2)(p = 0) = [ΛlnΛ + (γ−1)Λ]

{
4λ 2

c2s3
− 8

3

λ 2

s2c2
− 38

sc4

}
+ lnΛ{terms ∝ u}+O(λ

4)

I all divergences vanish under a single condition:

c2 = α(s)λ
−2

I no ‘fine-tuning’ necessary



Interpretation
On the three-brane:

I λ excites infinitely many massive couplings

I affects stability of D-branes

I tachyon condensation process initiated and modified

I qualitatively new RG flows

I λ is running, c2 can be kept finite, ρ is running &
condensating

I breakdown of predictability → 2-brane Ansatz

On the two-brane:

I a priori tachyonic instability

I instability removed by essentially same condition on c2 as on
three-brane

I tachyon can be set to zero without fine-tuning

I indicates that 2-brane is conformal

I λ really seems to interpolate between flat and curved space
→ supports interpretation of λ as closed string perturbation



Perspectives

I higher order β -functions, more examples, better methods

I better control over flow

I other WZW-branes, potential

I backgrounds other than WZW

I supersymmetry

I systematic investigation of open-closed modulispaces, better
statements on background independence

I boundary state formalism, possibly access to closed string
vacuum

I connections to T-folds? Defect CFTs?
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